Theo báo cáo chính phủ dân số của nước ta tính đến năm 2018 là 95,93 triệu người. Giả sử tỷ lệ tăng trưởng dân số trung bình hàng năm là \[1,33\% \](kết quả làm tròn đến hàng phần trăm). Xét tính đúng sai của các mệnh đề sau:
Quảng cáo
Trả lời:
a) Đúng
b) Đúng
\[N = 95,93.{(1 + 1,33\% )^7} \approx 105,23\]triệu người
c) Sai
Số dân tăng từ năm 2018 đến năm 2027: \[N = 95,93.{\left( {1 + 1,33} \right)^9} - 95,93 \approx 12,11\] triệu người.
d) Sai
\[108,04 = 95,93.{\left( {1 + 1,33} \right)^n} \Rightarrow n = 9 = m\]
\[P = 2{\log _3}9 + 1 = 5\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D

Sọt đựng đồ có dạng hình chóp cụt đều\[ABCD.A'B'C'D'\].
Ta có \[{S_1}\; = {S_{ABCD}}\; = {80^2}\; = 6400\left( {c{m^2}} \right),{\rm{ }}{S_2}\; = {S_{A'B'C'D'}}\; = {40^2}\; = 1600{\rm{ }}\left( {c{m^2}} \right).\]
Gọi O và O' lần lượt là tâm của hình vuông ABCD và A'B'C'D'.
Kẻ D'H^BD tại H. Khi đó OHDO’ là hình chữ nhật.
Ta có \(OD = 40\sqrt 2 \left( {cm} \right),OH = O'D' = 20\sqrt 2 \,\left( {cm} \right) \Rightarrow DH = 20\sqrt 2 \,\left( {cm} \right).\)
\(OO' = D'H = \sqrt {DD{'^2} - D{H^2}} = 20\sqrt {14\,} \,\left( {cm} \right).\)
Thể tích của sọt:\(V = \frac{1}{3}h\left( {{S_1} + {S_2} + \sqrt {{S_1}.{S_2}} } \right) \approx 279377\,\left( {c{m^3}} \right).\)
Lời giải

Giả sử các cạnh và đỉnh của kim tự tháp như hình vẽ. Vì S.ABCD hình chóp tứ giác đều nên \[SH \bot \left( {ABCD} \right)\;\](\(H = AC \cap BD\) )
Xét \({\rm{\Delta ABC}}\) vuông tại A, ta có: \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{{262}^2} + {{262}^2}} = 262\sqrt 2 \) (m).
\( \Rightarrow HC = \frac{{AC}}{2} = 131\sqrt 2 \) (m).
Xét \({\rm{\Delta SHC}}\) vuông tại H, ta có: \(SH = \sqrt {S{C^2} - H{C^2}} = \sqrt {{{230}^2} - {{(131\sqrt 2 )}^2}} = \sqrt {18578} \)(m).
Kẻ HJ vuông góc với SI, vì \(BC \bot HI,BC \bot SH \Rightarrow BC \bot HJ.\)
\(HJ \bot SI,HJ \bot BC \Rightarrow HJ \bot \left( {SBC} \right) \Rightarrow HJ = d\left( {H,\left( {SBC} \right)} \right).\)
Do đó \[HJ\]là đoạn đường ngắn nhất từ mặt bên đến kho báu.
Trong tam giác \[SHI\]vuông tại \[H\], ta có: \(HJ = \frac{{SH.SI}}{{\sqrt {S{H^2} + S{I^2}} }} \approx 94\left( m \right).\)
Vậy độ dài ngắn nhất cần tìm xấp xỉ \(94\,\,\left( m \right).\)
Câu 3
a) SO vuông góc (ABCD)
b) CD vuông góc (SBD)
c) AB vuông góc (SAC)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

