Cho hệ bất phương trình \(\left\{ \begin{array}{l}0 \le y \le 5\\x \ge 0\\x + y - 2 \ge 0\\x - y - 2 \le 0\end{array} \right.\) có miền nghiệm là \(S\).
Cho hệ bất phương trình \(\left\{ \begin{array}{l}0 \le y \le 5\\x \ge 0\\x + y - 2 \ge 0\\x - y - 2 \le 0\end{array} \right.\) có miền nghiệm là \(S\).
a) \(\left( {1;2} \right) \notin S\).
b) \(\left( {2;2} \right) \in S\).
c) Miền nghiệm \(S\) là miền tam giác.
Quảng cáo
Trả lời:
a) Thay \(\left( {1;2} \right)\) vào hệ bất phương trình ta được \(\left\{ \begin{array}{l}0 \le 2 \le 5\\1 \ge 0\\1 + 2 - 2 \ge 0\\1 - 2 - 2 \le 0\end{array} \right.\) (đúng).
Vậy \(\left( {1;2} \right) \in S\).
b) Thay \(\left( {2;2} \right)\) vào hệ bất phương ta được \(\left\{ \begin{array}{l}0 \le 2 \le 5\\2 \ge 0\\2 + 2 - 2 \ge 0\\2 - 2 - 2 \le 0\end{array} \right.\) (đúng).
Vậy \(\left( {2;2} \right) \in S\).
c) Vẽ các đường thẳng \(y = 5;x + y - 2 = 0;x - y - 2 = 0\) trên mặt phẳng tọa độ.
Ta có điểm \(\left( {2;2} \right)\) thuộc miền nghiệm của hệ bất phương trình.
Khi đó miền nghiệm của hệ bất phương trình là miền của tứ giác \(ABCD\) (kể cả các cạnh của tứ giác) (phần tô màu) với \(A\left( {2;0} \right),B\left( {0;2} \right),C\left( {0;5} \right),D\left( {7;5} \right)\).

d) Giá trị nhỏ nhất của biểu thức \(F = x - 2y\) đạt được tại một trong 4 điểm \(A\left( {2;0} \right),B\left( {0;2} \right),C\left( {0;5} \right),D\left( {7;5} \right)\).
Ta có \(F\left( {2;0} \right) = 2 - 2 \cdot 0 = 2\);
\(F\left( {0;2} \right) = 0 - 2 \cdot 2 = - 4\);
\(F\left( {0;5} \right) = 0 - 2 \cdot 5 = - 10\);
\(F\left( {7;5} \right) = 7 - 2 \cdot 5 = - 3\).
Vậy giá trị nhỏ nhất của biểu thức \(F\) là \( - 10\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x,y\) lần lượt là diện tích (ha) trồng nha đam và măng tây \(\left( {x \ge 0,y \ge 0} \right)\).
Theo bài ra ta có hệ phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 10\\10x + 30y \le 150\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 10\\x + 3y \le 15\end{array} \right.\).
Số tiền người nông dân thu được là \(F\left( {x;y} \right) = 4x + 6y\) (triệu).
Bài toán trở thành tìm giá trị lớn nhất của \(F\left( {x;y} \right) = 4x + 6y\) trên miền nghiệm của hệ.

Miền nghiệm là tứ giác \(OABC\) với tọa độ các đỉnh \(O\left( {0;0} \right),A\left( {0;5} \right),B\left( {7,5;2,5} \right),C\left( {10;0} \right)\).
Ta có \(F\left( {0;0} \right) = 0;F\left( {0;5} \right) = 30;F\left( {7,5;2,5} \right) = 45;F\left( {10;0} \right) = 40\).
Vậy giá trị lớn nhất của \(F\left( {x;y} \right) = 4x + 6y\) là 45 triệu đồng.
Vậy số tiền bác nông dân thu được nhiều nhất là 45 triệu đồng.
Câu 2
Lời giải
Từ hình vẽ ta thấy điểm \(O\left( {0;0} \right)\) thuộc miền nghiệm của bất phương trình.
Thay điểm \(O\left( {0;0} \right)\) vào biểu thức \(2x - y\) ta được \(2 \cdot 0 - 0 \le 3\).
Do đó miền nghiệm của bất phương trình \(2x - y \le 3\) được biểu diễn bởi nửa mặt phẳng không tô màu trong hình vẽ. Chọn A.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Số tiền mua vở viết là \(8x\) (nghìn đồng), số tiền mua bút là \(5y\) (nghìn đồng).
b) Để Bình trả đủ tiền mua bút và vở viết thì ta có bất phương trình bậc nhất hai ẩn \(x,y\) là \(8x + 5y \le 250\).
c) Với số tiền mẹ cho, Bình có thể mua được 20 quyển vở và 20 chiếc bút để đem ủng hộ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
