Một cửa hàng dự định nhập hai loại sản phẩm. Mỗi sản phẩm loại A có giá 200 nghìn đồng. Mỗi sản phẩm loại B có giá 300 nghìn đồng. Cửa hàng chỉ có số tiền tối đa là 12 triệu đồng để nhập hàng. Gọi \(x\) và \(y\) lần lượt là số sản phẩm loại A và loại B được nhập. Hãy lập bất phương trình theo \(x\) và \(y\) để biểu diễn điều kiện về chi phí mà cửa hàng phải thỏa mãn.
A. \(200x + 300y \ge 12000\).
B. \(x + y \le 12\).
Quảng cáo
Trả lời:
Theo đề ta có \(200x + 300y \le 12000\). Chọn D.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) \(\left( { - 1;3} \right)\) không là một nghiệm của hệ bất phương trình trên.
b) \(\left( { - 2;0} \right)\) là một nghiệm của hệ bất phương trình trên.
c) Hệ trên là một hệ bất phương trình bậc nhất hai ẩn.
Lời giải
a) Thay \(\left( { - 1;3} \right)\) vào hệ bất phương trình ta được \(\left\{ \begin{array}{l} - 1 + 2 \cdot 3 \le 5\\3 \ge 0\\ - 2 \cdot \left( { - 1} \right) + 6 \cdot 3 \ge 12\end{array} \right.\) (đúng).
Vậy \(\left( { - 1;3} \right)\) là một nghiệm của hệ bất phương trình trên.
b) Thay \(\left( { - 2;0} \right)\) vào hệ bất phương trình ta được \(\left\{ \begin{array}{l} - 2 + 2 \cdot 0 \le 5\\0 \ge 0\\ - 2 \cdot \left( { - 2} \right) + 6 \cdot 0 \ge 12\end{array} \right.\) (Vô lí).
Vậy \(\left( { - 2;0} \right)\) không là nghiệm của hệ bất phương trình trên.
c) Hệ trên là một hệ bất phương trình bậc nhất hai ẩn.
d)

Miền nghiệm của hệ bất phương trình là phần tô màu như hình vẽ kể cả biên.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Sai
Câu 2
A. \(\left\{ \begin{array}{l}y \ge 0\\5x - 4y \ge 10\\5x + 4y \le 10\end{array} \right.\).
Lời giải
\({d_1}\) là đường thẳng đi qua điểm \(\left( {2;0} \right)\) và \(\left( {0; - \frac{5}{2}} \right)\) có phương trình là \(5x - 4y = 10\).
\({d_2}\) là đường thẳng đi qua điểm \(\left( {\frac{5}{2};0} \right)\) và \(\left( {0;2} \right)\) có phương trình \(4x + 5y = 10\).
Dựa vào hình vẽ ta có điểm \(\left( {1;0} \right)\) thuộc miền nghiệm của \(\left\{ \begin{array}{l}x \ge 0\\5x - 4y \le 10\\4x + 5y \le 10\end{array} \right.\). Chọn B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Đường thẳng \(d\) đi qua điểm có tọa độ \(\left( {0;2} \right)\).
b) Các điểm thuộc miền nghiệm của hệ bất phương trình (I) đều có hoành độ không âm.
c) Miền nghiệm của hệ bất phương trình (I) chứa điểm \(M\left( {1; - 1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Nửa mặt phẳng chứa gốc tọa độ (không kể bờ \(x - 3y = 3\)).
B. Nửa mặt phẳng không chứa gốc tọa độ (không kể bờ \(x - 3y = 3\)).
C. Nửa mặt phẳng chứa gốc tọa độ (kể cả bờ ).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

