Một bình hoa dạng khối tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số y = -sinx +2 và trục Ox (tham khảo hình vẽ bên dưới). Biết đáy bình hoa là hình tròn có bán kính bằng 2dm, miệng bình hoa là đường tròn bán kính bằng 1.5dm. Bỏ qua độ dày của bình hoa, tính thể tích của bình hoa. ( kết quả làm tròn đến hàng đơn vị, đơn vị: dm3)
Đáp án: ____
Quảng cáo
Trả lời:
Đáp án đúng là "103"
Phương pháp giải
Ứng dụng tích phân để tính thể tích.
Lời giải
Giả sử thiết diện qua trục của bình hoa miêu tả như hình vẽ bên dưới. Chọn hệ trục tọa độ Oxy thỏa mãn gốc tọa độ O trùng với tâm đáy bình hoa, trục Ox trùng với trục của bình hoa.

Bán kính hình tròn đáy bình hoa bằng \({y_A} = 2\) nên
\( - \sin {x_A} + 2 = 2 \Rightarrow \sin {x_A} = 0 \Rightarrow {x_A} = 0\)
Bán kính đường tròn miệng bình hoa bằng \({y_B} = 1,5\,\,\left( {2\pi < {x_B} < 3\pi } \right)\), tức là:
\(\sin \left( {{x_B} - \pi } \right) + 2 = 1,5 \Rightarrow \sin \left( {{x_B} - \pi } \right) = \sin \left( { - \frac{\pi }{6}} \right) \Rightarrow {x_B} - \pi = - \frac{\pi }{6} + 2\pi \Rightarrow {x_B} = \frac{{17\pi }}{6}\)
Khi đó thể tích bình hoa giới hạn bởi các đường \(y = - \sin x + 2;y = 0;x = 0;x = \frac{{17\pi }}{6}\) được xác định theo công thức
\(\begin{array}{l}V = \pi \int\limits_0^{\frac{{17\pi }}{6}} {{{( - \sin x + 2)}^2}} \;{\rm{d}}x = \pi \int\limits_0^{\frac{{17\pi }}{6}} {\left( {4 - 4\sin x + {{\sin }^2}x} \right)} {\rm{d}}x\\ = \pi \int\limits_0^{\frac{{17\pi }}{6}} {\left( {4 - 4\sin x + \frac{{1 - \cos 2x}}{2}} \right)} {\rm{d}}x = \pi \int\limits_0^{\frac{{17\pi }}{6}} {\left( {\frac{9}{2} - 4\sin x - \frac{{\cos 2x}}{2}} \right)} {\rm{d}}x\\ = \left. {\pi \left( {\frac{9}{2}x + 4\cos x - \frac{{\sin 2x}}{4}} \right)} \right|_0^{\frac{{17\pi }}{6}} = \frac{{51{\pi ^2}}}{4} - \frac{{32 + 15\sqrt 3 }}{8}\pi \approx 103,07\,\,\left( {{\rm{d}}{{\rm{m}}^3}} \right)\end{array}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là D
Phương pháp giải
Áp suất phân tử chất khí: \(p = \frac{1}{3}\rho \overline {{v^2}} \)
Lời giải
Áp suất mà khí đó tác dụng lên thành bình là:
\(p = \frac{1}{3}.\frac{m}{V}\overline {{v^2}} = \frac{1}{3}\rho \overline {{v^2}} \)
\[ \to p = \frac{1}{3}{.6.10^{ - 2}}{.500^2} = {5.10^3}\,(Pa)\]
Lời giải
Đáp án đúng là B
Phương pháp giải
+ Tính ab/ab -> ab = ?
+ Tính f khi biết ab
=> Tính tỉ lệ các kiểu hình còn lại
Ruồi giấm đực không có HVG
Lời giải
Ruồi cái thân đen, cánh cụt, mắt đỏ:
\(A - bb{X^D}{X^ - } = 10,25\% \Rightarrow A - bb = \frac{{0,1025}}{{0,5{X^D}{X^ - }}} = 0,205\)
\( \Rightarrow \frac{{ab}}{{ab}} = 0,045 \to \underline {ab} \)♀\( = 0,09 = \frac{f}{2}\)(vì bên đực không có HVG nên cho ab = 0,5)
⇒ tần số HVG = 18% ⇒ A−B− = 0,545
I đúng, số kiểu gene tối đa: 7 × 4 = 28; số kiểu hình = 4 × 3= 12.
II sai, tần số HVG = 18%.
III sai, A-B-XDY = 0,545 0,25 XDY = 0,13625.
IV đúng, số cá thể cái dị hợp tử về 1 trong 3 cặp gene:
(0,41Ab + 0,41aB) × (0,5AB + 0,5ab) × 0,25XDXD + (0,09AB × 0,5AB + 0,09ab × 0,5ab) × 0,25XDXd = 0,2275
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.