Cho hệ bất phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}2x + y \le 3\\x - y \ge 0\\y \ge 0\end{array} \right.\).
Cho hệ bất phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}2x + y \le 3\\x - y \ge 0\\y \ge 0\end{array} \right.\).
a) Có 2 giá trị nguyên của \(m\) để \(\left( {x;y} \right) = \left( {m;1} \right)\) là nghiệm của hệ bất phương trình trên.
b) \(\left( {x;y} \right) = \left( {1;2} \right)\) là nghiệm của hệ bất phương trình trên.
c) Miền nghiệm của hệ bất phương trình trên là một miền tam giác tô màu dưới đây

Câu hỏi trong đề: Bài tập ôn tập Toán 10 Cánh diều Chương 2 có đáp án !!
Quảng cáo
Trả lời:
a) Thay \(\left( {x;y} \right) = \left( {m;1} \right)\) vào hệ ta được \(\left\{ \begin{array}{l}2m + 1 \le 3\\m - 1 \ge 0\\1 \ge 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \le 1\\m \ge 1\end{array} \right.\)\( \Rightarrow m = 1\).
Vậy có 1 giá trị nguyên của \(m\).
b) Thay \(\left( {x;y} \right) = \left( {1;2} \right)\)vào hệ bất phương trình ta được \(\left\{ \begin{array}{l}2 \cdot 1 + 2 \le 3\\1 - 2 \ge 0\\2 \ge 0\end{array} \right.\) (vô lí).
Vậy \(\left( {x;y} \right) = \left( {1;2} \right)\) không là nghiệm của hệ bất phương trình trên.
c) Miền nghiệm của hệ bất phương trình trên là một miền tam giác \(ABC\) (phần tô màu) với \(O\left( {0;0} \right),A\left( {1;1} \right),B\left( {\frac{3}{2};0} \right)\).
d) Biểu thức \(F = 2x + 3y\) đạt giá trị lớn nhất tại một trong ba điểm \(O\left( {0;0} \right),A\left( {1;1} \right),B\left( {\frac{3}{2};0} \right)\).
Khi đó \(F\left( {0,0} \right) = 0;F\left( {1;1} \right) = 5;F\left( {\frac{3}{2};0} \right) = 3\).
Vậy giá trị lớn nhất của biểu thức \(F = 2x + 3y\) là 5.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) Điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của hệ.
c) Miền nghiệm của hệ bất phương trình là một tam giác.
Lời giải
a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) Thay tọa độ điểm \(\left( {1;3} \right)\) vào hệ ta được \(\left\{ \begin{array}{l}3 \cdot 1 + 3 \le 6\\1 + 3 \le 4\\1 \ge 0,3 \ge 0\end{array} \right.\) (đúng).
Vậy điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của bất phương trình.
c) Miền nghiệm của hệ bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;4} \right),B\left( {1;3} \right),C\left( {2;0} \right)\).

d) \({S_{OABC}} = {S_{AHB}} + {S_{OHBK}} + {S_{BKC}}\)\( = \frac{1}{2} \cdot 1 \cdot 1 + 1 \cdot 3 + \frac{1}{2} \cdot 3 \cdot 1 = 5\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Lời giải
Gọi \(x,y\left( {x,y \in \mathbb{N}} \right)\) lần lượt là số quyển vở và bút bi An mua.
Theo đề ta có \(7000x + 5000y \le 100000\)\( \Leftrightarrow 7x + 5y \le 100\).
Mà An đã mua 10 quyển vở nên \(x = 10\).
Khi đó \(7 \cdot 10 + 5y \le 100\)\( \Leftrightarrow y \le 6\).
Vậy An có thể mua tối đa 6 chiếc bút bi.
Câu 3
a) Hệ bất phương trình trên là hệ bất phương trình bậc nhất hai ẩn.
b) Cặp số \(\left( {x;y} \right) = \left( {1;3} \right)\) là nghiệm của hệ bất phương trình trên.
c) Miền nghiệm \(D\) của hệ bất phương trình trên là một tứ giác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
