Câu hỏi:

18/12/2025 93 Lưu

Cho hệ bất phương trình \(\left\{ \begin{array}{l}2x + 3y - 6 \le 0\\x \ge 0\\2x - 3y - 1 \le 0\end{array} \right.\).

a) Hệ trên là một hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) \(\left( {0;0} \right)\) là một nghiệm của hệ bất phương trình trên.

Đúng
Sai

c) \(\left( {1; - 1} \right)\)là một nghiệm của hệ bất phương trình trên.

Đúng
Sai
d) Biểu thức \(L = y - x\) đạt giá trị lớn nhất là \(a\) và đạt giá trị nhỏ nhất là \(b\). Khi đó \(a + b = \frac{7}{2}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Hệ trên là một hệ bất phương trình bậc nhất hai ẩn.

b) Thay điểm \(\left( {0;0} \right)\) vào hệ bất phương trình ta được \(\left\{ \begin{array}{l}2 \cdot 0 + 3 \cdot 0 - 6 \le 0\\0 \ge 0\\2 \cdot 0 - 3 \cdot 0 - 1 \le 0\end{array} \right.\) (đúng).

Vậy \(\left( {0;0} \right)\) là một nghiệm của hệ bất phương trình trên.

c) Thay điểm \(\left( {1; - 1} \right)\) vào hệ bất phương trình ta được \(\left\{ \begin{array}{l}2 \cdot 1 + 3 \cdot \left( { - 1} \right) - 6 \le 0\\1 \ge 0\\2 \cdot 1 - 3 \cdot \left( { - 1} \right) - 1 \le 0\end{array} \right.\) (vô lí).

Vậy \(\left( {1; - 1} \right)\)không là một nghiệm của hệ bất phương trình trên.

d) Miền nghiệm của hệ bất phương trình là miền tam giác \(ABC\), kể cả các cạnh (phần tô màu) với \(A\left( {0;2} \right),B\left( {\frac{7}{4};\frac{5}{6}} \right),C\left( {0; - \frac{1}{3}} \right)\).

Cho hệ bất phương trình 2x + 3y -6 bé hơn bằng 0 , x lớn hơn bằng 0 , 2x -3y -1 bé hơn bằng 0 (ảnh 1)

Biểu thức \(L = y - x\) đạt giá trị lớn nhất, đạt giá trị nhỏ nhất tại một trong ba điểm \(A\left( {0;2} \right),B\left( {\frac{7}{4};\frac{5}{6}} \right),C\left( {0; - \frac{1}{3}} \right)\).

Ta có \(L\left( {0,2} \right) = 2 - 0 = 2\); \(L\left( {\frac{7}{4},\frac{5}{6}} \right) = \frac{5}{6} - \frac{7}{4} = - \frac{{11}}{{12}}\); \(L\left( {0, - \frac{1}{3}} \right) = - \frac{1}{3} - 0 = - \frac{1}{3}\).

Vậy \(a = 2;b = - \frac{{11}}{{12}}\). Suy ra \(a + b = \frac{{13}}{{12}}\).

Đáp án: a) Đúng;     b) Đúng;    c) Sai;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) Điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của hệ.

Đúng
Sai

c) Miền nghiệm của hệ bất phương trình là một tam giác.

Đúng
Sai
d) Miền nghiệm của hệ bất phương trình là một đa giác có diện tích bằng 5.
Đúng
Sai

Lời giải

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

b) Thay tọa độ điểm \(\left( {1;3} \right)\) vào hệ ta được \(\left\{ \begin{array}{l}3 \cdot 1 + 3 \le 6\\1 + 3 \le 4\\1 \ge 0,3 \ge 0\end{array} \right.\) (đúng).

Vậy điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của bất phương trình.

c) Miền nghiệm của hệ bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;4} \right),B\left( {1;3} \right),C\left( {2;0} \right)\).

Cho hệ bất phương trình 3x + y bé hơn bằng 6 , x+ y bé hơn bằng 4 và x,y lớn hơn bằng 0 (ảnh 1)

d) \({S_{OABC}} = {S_{AHB}} + {S_{OHBK}} + {S_{BKC}}\)\( = \frac{1}{2} \cdot 1 \cdot 1 + 1 \cdot 3 + \frac{1}{2} \cdot 3 \cdot 1 = 5\).

Đáp án: a) Đúng;     b) Đúng;    c) Sai;    d) Đúng.

Lời giải

Gọi \(x,y\left( {x,y \in \mathbb{N}} \right)\) lần lượt là số quyển vở và bút bi An mua.

Theo đề ta có \(7000x + 5000y \le 100000\)\( \Leftrightarrow 7x + 5y \le 100\).

Mà An đã mua 10 quyển vở nên \(x = 10\).

Khi đó \(7 \cdot 10 + 5y \le 100\)\( \Leftrightarrow y \le 6\).

Vậy An có thể mua tối đa 6 chiếc bút bi.

Câu 3

a) Hệ bất phương trình trên là hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) Cặp số \(\left( {x;y} \right) = \left( {1;3} \right)\) là nghiệm của hệ bất phương trình trên.

Đúng
Sai

c) Miền nghiệm \(D\) của hệ bất phương trình trên là một tứ giác.

Đúng
Sai
d) Giá trị nhỏ nhất của biểu thức \(F\left( {x,y} \right) = - x + y\) trên miền D xác định bởi hệ trên bằng 1.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP