Câu hỏi:

18/12/2025 3 Lưu

An thích ăn hai loại trái cây là cam và xoài, mỗi tuần mẹ cho An 200000 đồng để mua trái cây. Biết rằng giá cam là 15000 đồng/1 kg, giá xoài là 30000 đồng/1 kg. Gọi \(x,y\) lần lượt là số kg cam và xoài mà An có thể mua về sử dụng trong 1 tuần. Khi đó:

a) Trong tuần, số tiền An có thể mua cam là \(15000x\) đồng, số tiền An có thể mua xoài là \(30000y\) đồng (\(x,y > 0\)).

Đúng
Sai

b) Bất phương trình bậc nhất đã cho hai ẩn \(x,y\)\(3x + 6y \ge 40\).

Đúng
Sai

c) Cặp số \(\left( {5;4} \right)\)thỏa mãn bất phương trình bậc nhất hai ẩn \(x,y\).

Đúng
Sai
d) An có thể mua \(4\)kg cam, 5 kg xoài trong tuần.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Trong tuần, số tiền An có thể mua cam là \(15000x\) đồng, số tiền An có thể mua xoài là \(30000y\) đồng (\(x,y > 0\)).

b) Theo đề có \(15000x + 30000y \le 200000\)\( \Leftrightarrow 3x + 6y \le 40\).

c) Thay \(\left( {5;4} \right)\) vào bất phương trình ta được \(3 \cdot 5 + 6 \cdot 4 \le 40\) (đúng).

Vậy cặp số \(\left( {5;4} \right)\)thỏa mãn bất phương trình bậc nhất hai ẩn \(x,y\).

d) Thay \(x = 4;y = 5\) vào bất phương trình ta được \(3 \cdot 4 + 6 \cdot 5 \le 40\) (vô lí).

Vậy An không thể mua \(4\)kg cam, 5 kg xoài trong tuần.

Đáp án: a) Đúng;     b) Sai;    c) Đúng;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) Điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của hệ.

Đúng
Sai

c) Miền nghiệm của hệ bất phương trình là một tam giác.

Đúng
Sai
d) Miền nghiệm của hệ bất phương trình là một đa giác có diện tích bằng 5.
Đúng
Sai

Lời giải

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

b) Thay tọa độ điểm \(\left( {1;3} \right)\) vào hệ ta được \(\left\{ \begin{array}{l}3 \cdot 1 + 3 \le 6\\1 + 3 \le 4\\1 \ge 0,3 \ge 0\end{array} \right.\) (đúng).

Vậy điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của bất phương trình.

c) Miền nghiệm của hệ bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;4} \right),B\left( {1;3} \right),C\left( {2;0} \right)\).

Cho hệ bất phương trình 3x + y bé hơn bằng 6 , x+ y bé hơn bằng 4 và x,y lớn hơn bằng 0 (ảnh 1)

d) \({S_{OABC}} = {S_{AHB}} + {S_{OHBK}} + {S_{BKC}}\)\( = \frac{1}{2} \cdot 1 \cdot 1 + 1 \cdot 3 + \frac{1}{2} \cdot 3 \cdot 1 = 5\).

Đáp án: a) Đúng;     b) Đúng;    c) Sai;    d) Đúng.

Lời giải

Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + 4y \le 200\\30x + 15y \le 1200\end{array} \right.\)(I).

Lợi nhuận thu được là \(F\left( {x,y} \right) = 40x + 30y\).

Bài toán trở thành tìm giá trị lớn nhất của biểu thức \(F\left( {x,y} \right) = 40x + 30y\) trên miền nghiệm của hệ bất phương trình (I).

Miền nghiệm của bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;50} \right),B\left( {20;40} \right),C\left( {40;0} \right)\).

Một xưởng sản xuất hai loại sản phẩm là sản phẩm loại I và sản phẩm loại II: (ảnh 1)

Khi đó \(F\left( {0,0} \right) = 40 \cdot 0 + 30 \cdot 0 = 0\); \(F\left( {0,50} \right) = 40 \cdot 0 + 30 \cdot 50 = 1500\);

\(F\left( {20,40} \right) = 40 \cdot 20 + 30 \cdot 40 = 2000\); \(F\left( {40,0} \right) = 40 \cdot 40 + 30 \cdot 0 = 1600\).

Lợi nhuận lớn nhất là 2000 nghìn đồng khi sản xuất 20 sản phẩm loại I, 40 sản phẩm loại II.

Suy ra \(x = 20;y = 40\). Do đó \(x + y = 60\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(3x + 2y > 2\).     
B. \(3x + 2y < 2\).      
C. \( - 3x + 2y \ge 2\).
D. \( - 3x + 2y \le 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP