Câu hỏi:

18/12/2025 6 Lưu

Mỗi bãi đỗ xe ban đêm có diện tích đậu xe là 150 m2 (không tính lối đi cho xe ra vào). Cho biết xe du lịch cần diện tích 3 m2/ chiếc và phải trả phí 40 nghìn đồng, xe tải cần diện tích 5 m2/chiếc và phải trả phí 50 nghìn đồng. Nhân viên quản lí không thể phục vụ quá 40 xe một đêm. Hỏi bãi giữ xe nên cho đăng kí mỗi loại xe bao nhiêu chiếc xe để doanh thu lớn nhất? Gọi \(x\) là số xe du lịch và \(y\) là số xe tải mà chủ bãi xe nên cho xe đỗ một đêm. Khi đó:

a) Điều kiện \(x \ge 0;y \ge 0\).

Đúng
Sai

b) Giải bài toán trên bằng cách lập hệ bất phương trình bậc nhất 2 ẩn thì biểu diễn hình học miền nghiệm của hệ là một hình tam giác.

Đúng
Sai

c) Tổng doanh thu của bãi xe trong 1 đêm là \(40x + 50y\).

Đúng
Sai
d) Để có doanh thu cao nhất, chủ bãi xe cho đăng kí 25 chiếc xe du lịch và 15 chiếc xe tải một đêm.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Điều kiện \(x \ge 0;y \ge 0\).

b) Tổng diện tích cho \(x\) là số xe du lịch và \(y\) là số xe tải là \(3x + 5y\) (m2).

Theo đề ta có hệ \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\3x + 5y \le 150\\x + y \le 40\end{array} \right.\).

Miền nghiệm của hệ bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;30} \right),B\left( {25;15} \right),C\left( {40;0} \right)\).

Mỗi bãi đỗ xe ban đêm có diện tích đậu xe là 150 m2 (không tính lối đi cho xe ra vào). Cho biết xe du (ảnh 1)

c) Tổng doanh thu của bãi xe trong 1 đêm là \(F\left( {x,y} \right) = 40x + 50y\).

d) Doanh thu của bãi xe đạt giá trị lớn nhất tại 1 trong 4 điểm \(O\left( {0;0} \right),A\left( {0;30} \right),B\left( {25;15} \right),C\left( {40;0} \right)\).

Khi đó \(F\left( {0,0} \right) = 40 \cdot 0 + 50 \cdot 0 = 0\); \(F\left( {0;30} \right) = 40 \cdot 0 + 50 \cdot 30 = 1500\);

\(F\left( {25,15} \right) = 40 \cdot 25 + 50 \cdot 15 = 1750\); \(F\left( {40;0} \right) = 40 \cdot 40 + 50 \cdot 0 = 1600\).

Vậy để có doanh thu cao nhất, chủ bãi xe cho đăng kí 25 chiếc xe du lịch và 15 chiếc xe tải một đêm.

Đáp án: a) Đúng;     b) Sai;    c) Đúng;    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) Điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của hệ.

Đúng
Sai

c) Miền nghiệm của hệ bất phương trình là một tam giác.

Đúng
Sai
d) Miền nghiệm của hệ bất phương trình là một đa giác có diện tích bằng 5.
Đúng
Sai

Lời giải

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

b) Thay tọa độ điểm \(\left( {1;3} \right)\) vào hệ ta được \(\left\{ \begin{array}{l}3 \cdot 1 + 3 \le 6\\1 + 3 \le 4\\1 \ge 0,3 \ge 0\end{array} \right.\) (đúng).

Vậy điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của bất phương trình.

c) Miền nghiệm của hệ bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;4} \right),B\left( {1;3} \right),C\left( {2;0} \right)\).

Cho hệ bất phương trình 3x + y bé hơn bằng 6 , x+ y bé hơn bằng 4 và x,y lớn hơn bằng 0 (ảnh 1)

d) \({S_{OABC}} = {S_{AHB}} + {S_{OHBK}} + {S_{BKC}}\)\( = \frac{1}{2} \cdot 1 \cdot 1 + 1 \cdot 3 + \frac{1}{2} \cdot 3 \cdot 1 = 5\).

Đáp án: a) Đúng;     b) Đúng;    c) Sai;    d) Đúng.

Lời giải

Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + 4y \le 200\\30x + 15y \le 1200\end{array} \right.\)(I).

Lợi nhuận thu được là \(F\left( {x,y} \right) = 40x + 30y\).

Bài toán trở thành tìm giá trị lớn nhất của biểu thức \(F\left( {x,y} \right) = 40x + 30y\) trên miền nghiệm của hệ bất phương trình (I).

Miền nghiệm của bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;50} \right),B\left( {20;40} \right),C\left( {40;0} \right)\).

Một xưởng sản xuất hai loại sản phẩm là sản phẩm loại I và sản phẩm loại II: (ảnh 1)

Khi đó \(F\left( {0,0} \right) = 40 \cdot 0 + 30 \cdot 0 = 0\); \(F\left( {0,50} \right) = 40 \cdot 0 + 30 \cdot 50 = 1500\);

\(F\left( {20,40} \right) = 40 \cdot 20 + 30 \cdot 40 = 2000\); \(F\left( {40,0} \right) = 40 \cdot 40 + 30 \cdot 0 = 1600\).

Lợi nhuận lớn nhất là 2000 nghìn đồng khi sản xuất 20 sản phẩm loại I, 40 sản phẩm loại II.

Suy ra \(x = 20;y = 40\). Do đó \(x + y = 60\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(3x + 2y > 2\).     
B. \(3x + 2y < 2\).      
C. \( - 3x + 2y \ge 2\).
D. \( - 3x + 2y \le 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP