Câu hỏi:

18/12/2025 4 Lưu

Cho bất phương trình \(\frac{x}{2} + \frac{y}{3} - 1 \le 0\). Miền nghiệm có chứa bao nhiêu điểm \(\left( {x;y} \right)\) với \(x,y\) là các số nguyên dương?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

3

Ta có \(\frac{x}{2} + \frac{y}{3} - 1 \le 0\)\( \Leftrightarrow 3x + 2y - 6 \le 0\).

Vẽ đường thẳng \(3x + 2y - 6 = 0\) trên hệ trục tọa độ.

Miền nghiệm của bất phương trình là nửa mặt phẳng bờ là đường thẳng \(3x + 2y - 6 = 0\) chứa điểm \(O\left( {0;0} \right)\) (kể cả đường thẳng \(3x + 2y - 6 = 0\)) (phần không tô màu).

Cho bất phương trình {x}{2} + \{y}{3} - 1 \le 0\). Miền nghiệm có chứa bao nhiêu điểm (ảnh 1)

\(x,y\) là các số nguyên dương nên có 3 điểm \(\left( {1;1} \right),\left( {1;2} \right),\left( {2;0} \right)\).

Vậy có 3 điểm thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) Điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của hệ.

Đúng
Sai

c) Miền nghiệm của hệ bất phương trình là một tam giác.

Đúng
Sai
d) Miền nghiệm của hệ bất phương trình là một đa giác có diện tích bằng 5.
Đúng
Sai

Lời giải

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

b) Thay tọa độ điểm \(\left( {1;3} \right)\) vào hệ ta được \(\left\{ \begin{array}{l}3 \cdot 1 + 3 \le 6\\1 + 3 \le 4\\1 \ge 0,3 \ge 0\end{array} \right.\) (đúng).

Vậy điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của bất phương trình.

c) Miền nghiệm của hệ bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;4} \right),B\left( {1;3} \right),C\left( {2;0} \right)\).

Cho hệ bất phương trình 3x + y bé hơn bằng 6 , x+ y bé hơn bằng 4 và x,y lớn hơn bằng 0 (ảnh 1)

d) \({S_{OABC}} = {S_{AHB}} + {S_{OHBK}} + {S_{BKC}}\)\( = \frac{1}{2} \cdot 1 \cdot 1 + 1 \cdot 3 + \frac{1}{2} \cdot 3 \cdot 1 = 5\).

Đáp án: a) Đúng;     b) Đúng;    c) Sai;    d) Đúng.

Lời giải

Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + 4y \le 200\\30x + 15y \le 1200\end{array} \right.\)(I).

Lợi nhuận thu được là \(F\left( {x,y} \right) = 40x + 30y\).

Bài toán trở thành tìm giá trị lớn nhất của biểu thức \(F\left( {x,y} \right) = 40x + 30y\) trên miền nghiệm của hệ bất phương trình (I).

Miền nghiệm của bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;50} \right),B\left( {20;40} \right),C\left( {40;0} \right)\).

Một xưởng sản xuất hai loại sản phẩm là sản phẩm loại I và sản phẩm loại II: (ảnh 1)

Khi đó \(F\left( {0,0} \right) = 40 \cdot 0 + 30 \cdot 0 = 0\); \(F\left( {0,50} \right) = 40 \cdot 0 + 30 \cdot 50 = 1500\);

\(F\left( {20,40} \right) = 40 \cdot 20 + 30 \cdot 40 = 2000\); \(F\left( {40,0} \right) = 40 \cdot 40 + 30 \cdot 0 = 1600\).

Lợi nhuận lớn nhất là 2000 nghìn đồng khi sản xuất 20 sản phẩm loại I, 40 sản phẩm loại II.

Suy ra \(x = 20;y = 40\). Do đó \(x + y = 60\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(3x + 2y > 2\).     
B. \(3x + 2y < 2\).      
C. \( - 3x + 2y \ge 2\).
D. \( - 3x + 2y \le 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP