Câu hỏi:

18/12/2025 6 Lưu

Một xưởng sản xuất bàn và ghế. Một chiếc bàn cần 1,5 giờ lắp ráp và 1 giờ hoàn thiện, 1 chiếc ghế cần 1 giờ lắp ráp và 2 giờ hoàn thiện. Bộ phận lắp ráp có 3 nhân công, bộ phận hoàn thiện có 4 nhân công. Biết một công nhân làm việc không quá 8 tiếng mỗi ngày. Biết thị trường luôn tiêu thụ hết sản phẩm của xưởng và lượng ghế tiêu thụ không vượt quá 3,5 lần số bàn. Giả sử trong một ngày xưởng cần sản xuất \(x\) chiếc bàn và \(y\) chiếc ghế.

a) Viết hệ bất phương trình biểu thị các điều kiện của bài toán.

b) Biết một chiếc bàn lãi 600 nghìn đồng, một chiếc ghế lãi 450 nghìn đồng. Hỏi trong một ngày, xưởng cần sản xuất bao nhiêu chiếc bàn, bao nhiêu chiếc ghế để được tiền lãi cao nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Thời gian lắp ráp tối đa mỗi ngày là \(3 \cdot 8 = 24\) giờ.

Thời gian hoàn thiện tối đa mỗi ngày là \(4 \cdot 8 = 32\) giờ.

Thời gian lắp ráp cần để sản xuất \(x\) chiếc bàn và \(y\) chiếc ghế là \(1,5x + y\) (giờ).

Thời gian hoàn thiện cần để sản xuất \(x\) chiếc bàn và \(y\) chiếc ghế là \(x + 2y\)(giờ).

Theo đề ta có hệ \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\1,5x + y \le 24\\x + 2y \le 32\\y \le 3,5x\end{array} \right.\) (I).

b) Tiền lãi mà xưởng thu được là \(F\left( {x,y} \right) = 600x + 450y\) nghìn đồng.

Bài toán trở thành tìm giá trị lớn nhất của biểu thức \(F\left( {x,y} \right) = 600x + 450y\) trên miền nghiệm của hệ bất phương trình (I).

Một xưởng sản xuất bàn và ghế. Một chiếc bàn cần 1,5 giờ lắp ráp và 1 giờ hoàn thiện, 1 chiếc (ảnh 1)

Miền nghiệm của hệ bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {4;14} \right),B\left( {8;12} \right),C\left( {16;0} \right)\).

Ta có \(F\left( {0,0} \right) = 600 \cdot x + 450 \cdot 0 = 0\); \(F\left( {4,14} \right) = 600 \cdot 4 + 450 \cdot 14 = 8700\);

\(F\left( {8,12} \right) = 600 \cdot 8 + 450 \cdot 12 = 10200\); \(F\left( {16,0} \right) = 600 \cdot 16 + 450 \cdot 0 = 9600\).

Vậy \(F\) đạt giá trị lớn nhất là 10200 nghìn đồng khi \(x = 8;y = 12\).

Vậy xưởng cần sản xuất 8 chiếc bàn và 12 chiếc ghế để thu được lãi cao nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) Điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của hệ.

Đúng
Sai

c) Miền nghiệm của hệ bất phương trình là một tam giác.

Đúng
Sai
d) Miền nghiệm của hệ bất phương trình là một đa giác có diện tích bằng 5.
Đúng
Sai

Lời giải

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

b) Thay tọa độ điểm \(\left( {1;3} \right)\) vào hệ ta được \(\left\{ \begin{array}{l}3 \cdot 1 + 3 \le 6\\1 + 3 \le 4\\1 \ge 0,3 \ge 0\end{array} \right.\) (đúng).

Vậy điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của bất phương trình.

c) Miền nghiệm của hệ bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;4} \right),B\left( {1;3} \right),C\left( {2;0} \right)\).

Cho hệ bất phương trình 3x + y bé hơn bằng 6 , x+ y bé hơn bằng 4 và x,y lớn hơn bằng 0 (ảnh 1)

d) \({S_{OABC}} = {S_{AHB}} + {S_{OHBK}} + {S_{BKC}}\)\( = \frac{1}{2} \cdot 1 \cdot 1 + 1 \cdot 3 + \frac{1}{2} \cdot 3 \cdot 1 = 5\).

Đáp án: a) Đúng;     b) Đúng;    c) Sai;    d) Đúng.

Lời giải

Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + 4y \le 200\\30x + 15y \le 1200\end{array} \right.\)(I).

Lợi nhuận thu được là \(F\left( {x,y} \right) = 40x + 30y\).

Bài toán trở thành tìm giá trị lớn nhất của biểu thức \(F\left( {x,y} \right) = 40x + 30y\) trên miền nghiệm của hệ bất phương trình (I).

Miền nghiệm của bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;50} \right),B\left( {20;40} \right),C\left( {40;0} \right)\).

Một xưởng sản xuất hai loại sản phẩm là sản phẩm loại I và sản phẩm loại II: (ảnh 1)

Khi đó \(F\left( {0,0} \right) = 40 \cdot 0 + 30 \cdot 0 = 0\); \(F\left( {0,50} \right) = 40 \cdot 0 + 30 \cdot 50 = 1500\);

\(F\left( {20,40} \right) = 40 \cdot 20 + 30 \cdot 40 = 2000\); \(F\left( {40,0} \right) = 40 \cdot 40 + 30 \cdot 0 = 1600\).

Lợi nhuận lớn nhất là 2000 nghìn đồng khi sản xuất 20 sản phẩm loại I, 40 sản phẩm loại II.

Suy ra \(x = 20;y = 40\). Do đó \(x + y = 60\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(3x + 2y > 2\).     
B. \(3x + 2y < 2\).      
C. \( - 3x + 2y \ge 2\).
D. \( - 3x + 2y \le 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP