Một xưởng sản xuất bàn và ghế. Một chiếc bàn cần 1,5 giờ lắp ráp và 1 giờ hoàn thiện, 1 chiếc ghế cần 1 giờ lắp ráp và 2 giờ hoàn thiện. Bộ phận lắp ráp có 3 nhân công, bộ phận hoàn thiện có 4 nhân công. Biết một công nhân làm việc không quá 8 tiếng mỗi ngày. Biết thị trường luôn tiêu thụ hết sản phẩm của xưởng và lượng ghế tiêu thụ không vượt quá 3,5 lần số bàn. Giả sử trong một ngày xưởng cần sản xuất \(x\) chiếc bàn và \(y\) chiếc ghế.
a) Viết hệ bất phương trình biểu thị các điều kiện của bài toán.
b) Biết một chiếc bàn lãi 600 nghìn đồng, một chiếc ghế lãi 450 nghìn đồng. Hỏi trong một ngày, xưởng cần sản xuất bao nhiêu chiếc bàn, bao nhiêu chiếc ghế để được tiền lãi cao nhất?
Một xưởng sản xuất bàn và ghế. Một chiếc bàn cần 1,5 giờ lắp ráp và 1 giờ hoàn thiện, 1 chiếc ghế cần 1 giờ lắp ráp và 2 giờ hoàn thiện. Bộ phận lắp ráp có 3 nhân công, bộ phận hoàn thiện có 4 nhân công. Biết một công nhân làm việc không quá 8 tiếng mỗi ngày. Biết thị trường luôn tiêu thụ hết sản phẩm của xưởng và lượng ghế tiêu thụ không vượt quá 3,5 lần số bàn. Giả sử trong một ngày xưởng cần sản xuất \(x\) chiếc bàn và \(y\) chiếc ghế.
a) Viết hệ bất phương trình biểu thị các điều kiện của bài toán.
b) Biết một chiếc bàn lãi 600 nghìn đồng, một chiếc ghế lãi 450 nghìn đồng. Hỏi trong một ngày, xưởng cần sản xuất bao nhiêu chiếc bàn, bao nhiêu chiếc ghế để được tiền lãi cao nhất?
Câu hỏi trong đề: Bài tập ôn tập Toán 10 Cánh diều Chương 2 có đáp án !!
Quảng cáo
Trả lời:
a) Thời gian lắp ráp tối đa mỗi ngày là \(3 \cdot 8 = 24\) giờ.
Thời gian hoàn thiện tối đa mỗi ngày là \(4 \cdot 8 = 32\) giờ.
Thời gian lắp ráp cần để sản xuất \(x\) chiếc bàn và \(y\) chiếc ghế là \(1,5x + y\) (giờ).
Thời gian hoàn thiện cần để sản xuất \(x\) chiếc bàn và \(y\) chiếc ghế là \(x + 2y\)(giờ).
Theo đề ta có hệ \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\1,5x + y \le 24\\x + 2y \le 32\\y \le 3,5x\end{array} \right.\) (I).
b) Tiền lãi mà xưởng thu được là \(F\left( {x,y} \right) = 600x + 450y\) nghìn đồng.
Bài toán trở thành tìm giá trị lớn nhất của biểu thức \(F\left( {x,y} \right) = 600x + 450y\) trên miền nghiệm của hệ bất phương trình (I).

Miền nghiệm của hệ bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {4;14} \right),B\left( {8;12} \right),C\left( {16;0} \right)\).
Ta có \(F\left( {0,0} \right) = 600 \cdot x + 450 \cdot 0 = 0\); \(F\left( {4,14} \right) = 600 \cdot 4 + 450 \cdot 14 = 8700\);
\(F\left( {8,12} \right) = 600 \cdot 8 + 450 \cdot 12 = 10200\); \(F\left( {16,0} \right) = 600 \cdot 16 + 450 \cdot 0 = 9600\).
Vậy \(F\) đạt giá trị lớn nhất là 10200 nghìn đồng khi \(x = 8;y = 12\).
Vậy xưởng cần sản xuất 8 chiếc bàn và 12 chiếc ghế để thu được lãi cao nhất.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) Điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của hệ.
c) Miền nghiệm của hệ bất phương trình là một tam giác.
Lời giải
a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) Thay tọa độ điểm \(\left( {1;3} \right)\) vào hệ ta được \(\left\{ \begin{array}{l}3 \cdot 1 + 3 \le 6\\1 + 3 \le 4\\1 \ge 0,3 \ge 0\end{array} \right.\) (đúng).
Vậy điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của bất phương trình.
c) Miền nghiệm của hệ bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;4} \right),B\left( {1;3} \right),C\left( {2;0} \right)\).

d) \({S_{OABC}} = {S_{AHB}} + {S_{OHBK}} + {S_{BKC}}\)\( = \frac{1}{2} \cdot 1 \cdot 1 + 1 \cdot 3 + \frac{1}{2} \cdot 3 \cdot 1 = 5\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Lời giải
Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + 4y \le 200\\30x + 15y \le 1200\end{array} \right.\)(I).
Lợi nhuận thu được là \(F\left( {x,y} \right) = 40x + 30y\).
Bài toán trở thành tìm giá trị lớn nhất của biểu thức \(F\left( {x,y} \right) = 40x + 30y\) trên miền nghiệm của hệ bất phương trình (I).
Miền nghiệm của bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;50} \right),B\left( {20;40} \right),C\left( {40;0} \right)\).

Khi đó \(F\left( {0,0} \right) = 40 \cdot 0 + 30 \cdot 0 = 0\); \(F\left( {0,50} \right) = 40 \cdot 0 + 30 \cdot 50 = 1500\);
\(F\left( {20,40} \right) = 40 \cdot 20 + 30 \cdot 40 = 2000\); \(F\left( {40,0} \right) = 40 \cdot 40 + 30 \cdot 0 = 1600\).
Lợi nhuận lớn nhất là 2000 nghìn đồng khi sản xuất 20 sản phẩm loại I, 40 sản phẩm loại II.
Suy ra \(x = 20;y = 40\). Do đó \(x + y = 60\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
