Trong không gian \(Oxyz\), cho đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 3 - 2t\\y = 1 + 2t\\z = - 5 + t\end{array} \right.\) và mặt phẳng \(\left( P \right):x + y - 5 = 0\).
Quảng cáo
Trả lời:
a) Đ, b) Đ, c) Đ, d) S
a) Vectơ \(\overrightarrow u = \left( { - 2;2;1} \right)\) là một vectơ chỉ phương của \(\Delta \).
b) Ta có \(\overrightarrow {{n_P}} = \left( {1;1;0} \right),\overrightarrow i = \left( {1;0;0} \right)\) lần lượt là vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) và \(\left( {Oyz} \right)\).
Có \(\cos \left( {\left( P \right),\left( {Oyz} \right)} \right) = \left| {\cos \left( {\overrightarrow {{n_P}} ,\overrightarrow i } \right)} \right| = \frac{1}{{\sqrt 2 }}\). Suy ra \(\left( {\left( P \right),\left( {Oyz} \right)} \right) = 45^\circ \).
c) Đường thẳng \({d_1}\) song song với \(\Delta \) nên nhận \(\overrightarrow u = \left( { - 2;2;1} \right)\) làm vectơ chỉ phương.
Phương trình đường thẳng \({d_1}\) có dạng:\(\frac{{x - 2}}{{ - 2}} = \frac{{y - 3}}{2} = \frac{{z + 4}}{1}\) .
d) \(d \bot \Delta \)nên \(\overrightarrow {{u_1}} .\overrightarrow u = 0\) mà \(\overrightarrow {{u_1}} .\overrightarrow u = 1.\left( { - 2} \right) + \left( { - 2} \right).2 + 4.1 = - 2 \ne 0\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 1,41
Phương trình mặt phẳng \(\left( {ABC} \right)\) là: \(\frac{x}{3} + \frac{y}{{1,5}} + \frac{z}{{ - 1,5}} = 1\)\( \Leftrightarrow x + 2y - 2z - 3 = 0\).
Đường thẳng \(MN\) qua \(M\left( {5;2;4} \right)\) và nhận \(\overrightarrow u = - \frac{1}{2}\overrightarrow {MN} = \left( {2;1;3} \right)\) làm vectơ chỉ phương có phương trình là: \(\left\{ \begin{array}{l}x = 5 + 2t\\y = 2 + t\\z = 4 + 3t\end{array} \right.\).
Tọa độ điểm H va chạm của mục tiêu tới mặt phẳng là nghiệm của hệ
. Suy ra
Ta có \(AH = \sqrt {{0^2} + {1^2} + {1^2}} = \sqrt 2 \approx 1,41\).
Câu 2
Lời giải
Đáp án đúng là: A
Ta có: \[\int\limits_0^3 {f\left( x \right){\rm{d}}x + } \,\int\limits_3^4 {f\left( x \right){\rm{d}}x = \int\limits_0^4 {f\left( x \right){\rm{d}}x \Rightarrow } } \int\limits_3^4 {f\left( x \right){\rm{d}}x = - \frac{{16}}{{15}}} \].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.