Khi gắn hệ tọa độ \(Oxyz\) (đơn vị trên mỗi trục tính theo kilômét) vào một trận địa pháo phòng không, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất. Trong tập luyện, một vùng mặt phẳng trong tầm hoạt động của pháo được giữ bởi 3 điểm pháo \(A\left( {3;0;0} \right);B\left( {0;1,5;0} \right);C\left( {0;0; - 1,5} \right)\). Một mục tiêu bay từ điểm \(M\left( {5;2;4} \right)\) tới \(N\left( {1;0; - 2} \right)\). Khoảng cách từ điểm pháo \(A\) tới vị trí va chạm của mục tiêu khi tới mặt phẳng là bao nhiêu? (làm tròn kết quả đến hàng phần trăm).
Khi gắn hệ tọa độ \(Oxyz\) (đơn vị trên mỗi trục tính theo kilômét) vào một trận địa pháo phòng không, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất. Trong tập luyện, một vùng mặt phẳng trong tầm hoạt động của pháo được giữ bởi 3 điểm pháo \(A\left( {3;0;0} \right);B\left( {0;1,5;0} \right);C\left( {0;0; - 1,5} \right)\). Một mục tiêu bay từ điểm \(M\left( {5;2;4} \right)\) tới \(N\left( {1;0; - 2} \right)\). Khoảng cách từ điểm pháo \(A\) tới vị trí va chạm của mục tiêu khi tới mặt phẳng là bao nhiêu? (làm tròn kết quả đến hàng phần trăm).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 12 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 1,41
Phương trình mặt phẳng \(\left( {ABC} \right)\) là: \(\frac{x}{3} + \frac{y}{{1,5}} + \frac{z}{{ - 1,5}} = 1\)\( \Leftrightarrow x + 2y - 2z - 3 = 0\).
Đường thẳng \(MN\) qua \(M\left( {5;2;4} \right)\) và nhận \(\overrightarrow u = - \frac{1}{2}\overrightarrow {MN} = \left( {2;1;3} \right)\) làm vectơ chỉ phương có phương trình là: \(\left\{ \begin{array}{l}x = 5 + 2t\\y = 2 + t\\z = 4 + 3t\end{array} \right.\).
Tọa độ điểm H va chạm của mục tiêu tới mặt phẳng là nghiệm của hệ
. Suy ra
Ta có \(AH = \sqrt {{0^2} + {1^2} + {1^2}} = \sqrt 2 \approx 1,41\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
Do mặt phẳng vuông góc với đường thẳng nên VTPT mặt phẳng cần tìm cùng phương với VTCP của đường thẳng \(\Delta \). Suy ra \({\vec n_P} = \left( {2\,;\,2\,;1} \right)\).
Vậy phương trình mặt phẳng cần tìm: \(2\left( {x - 1} \right) + 2\left( {y - 1} \right) + \left( {z + 1} \right) = 0 \Leftrightarrow 2x + 2y + z - 3 = 0\).
Lời giải
Trả lời: −367
Phương trình đường thẳng d là: \(\left\{ \begin{array}{l}x = - 688 + 91t\\y = - 185 + 75t\\z = 8\end{array} \right.\).
Giả sử M là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa.
Suy ra \(M \in d\)\( \Rightarrow M\left( { - 688 + 91t; - 185 + 75t;8} \right)\).
Vì \(OM = 417\) nên \(\sqrt {{{\left( { - 688 + 91t} \right)}^2} + {{\left( { - 185 + 75t} \right)}^2} + 64} = 417\)
\( \Leftrightarrow {\left( { - 688 + 91t} \right)^2} + {\left( { - 185 + 75t} \right)^2} + 64 = {417^2}\)
\( \Leftrightarrow 13906{t^2} - 152966t + 333744 = 0\)
\( \Leftrightarrow t = 8\) hoặc \(t = 3\).
Với \(t = 8\) thì \(M\left( {40;415;8} \right)\)\( \Rightarrow AM = \sqrt {{{\left( {40 + 688} \right)}^2} + {{\left( {415 + 185} \right)}^2} + {{\left( {8 - 8} \right)}^2}} \approx 943,4\).
Với \(t = 3\) thì \(M\left( { - 415;40;8} \right)\)\( \Rightarrow AM = \sqrt {{{\left( { - 415 + 688} \right)}^2} + {{\left( {40 + 185} \right)}^2} + {{\left( {8 - 8} \right)}^2}} \approx 353,8\).
Vì \(353,8 < 943,4\) nên tọa độ điểm M xuất hiện sớm nhất trên ra đa là \(M\left( { - 415;40;8} \right)\).
Suy ra \(a + b + c = - 415 + 40 + 8 = - 367\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
