Câu hỏi:

19/12/2025 4 Lưu

Một xưởng máy sử dụng một loại linh kiện được sản xuất từ hai cơ sở I và II. Số linh kiện do cơ sở I sản xuất chiếm \(61\)%, số linh kiện do cơ sở II sản xuất chiếm \(39\)%. Tỉ lệ linh kiện đạt tiêu chuẩn của cơ sở I, cơ sở II lần lượt là 93%, 82%. Kiểm tra ngẫu nhiên 1 linh kiện ở xưởng máy. Xét các biến cố:\({A_1}\): “Linh kiện được kiểm tra do cơ sở I sản xuất”;\({A_2}\): “Linh kiện được kiểm tra do cơ sở II sản xuất”;\(B\): “Linh kiện được kiểm tra đạt tiêu chuẩn”.

a) \(P\left( {{A_1}} \right) = 0,39.\)
Đúng
Sai
b) \(P\left( {B|{A_2}} \right) = 0,82.\)
Đúng
Sai
c) \(P\left( B \right) = 0,8871.\)
Đúng
Sai
d) \(P\left( {{A_1}|B} \right) = 0,55.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S, b) Đ, c) Đ, d) S

a) Do \({\rm{P}}\left( {{A_1}} \right) = 0,61\).

b) \({\rm{P}}\left( {B\mid {A_2}} \right) = \frac{{{\rm{P}}\left( {B \cap {A_2}} \right)}}{{{\rm{P}}\left( {{A_2}} \right)}} = 0,82\).

c)  Ta có: \({\rm{P}}\left( {{A_1}} \right) = 0,61;{\rm{P}}\left( {{A_2}} \right) = 0,39;{\rm{P}}\left( {B\mid {A_1}} \right) = 0,93;{\rm{P}}\left( {B\mid {A_2}} \right) = 0,82\).

Theo công thức xác suất toàn phần, ta có:

\({\rm{P}}\left( B \right) = {\rm{P}}\left( {{A_1}} \right){\rm{.P}}\left( {B\mid {A_1}} \right) + {\rm{P}}\left( {{A_2}} \right){\rm{.P}}\left( {B\mid {A_2}} \right) = 0,61.0,93 + 0,39.0,82 = 0,8871\).

d) Theo công thức Bayes, ta có: \({\rm{P}}\left( {{A_1}\mid B} \right) = \frac{{{\rm{P}}\left( {{A_1}} \right){\rm{.P}}\left( {B\mid {A_1}} \right)}}{{{\rm{P}}\left( B \right)}} = \frac{{0,61 \cdot 0,93}}{{0,8871}} \approx 0,64\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{{81}}{{35}}\).                          
B. \(\frac{{81\pi }}{{35}}\).                    
C. \(\frac{{71\pi }}{{35}}\).                    
D. \(\frac{{71}}{{35}}\).

Lời giải

Đáp án đúng là: B

Ta có \(V = \pi \int\limits_0^3 {{{\left( {\frac{1}{3}{x^3} - {x^2}} \right)}^2}dx} = \frac{{81\pi }}{{35}}\).

Lời giải

Trả lời: 0,3

Xét các biến cố: \(A\): “Lần thứ nhất rút ra được thẻ ghi số nguyên tố”;

\(B\): “Lần thứ hai rút được thẻ ghi số nguyên tố”.

Từ \(1\) đến \(40\) có \(12\) số nguyên tố nên \(P\left( A \right) = \frac{{12}}{{40}} = 0,3\) và \(P\left( {\overline A } \right) = 1 - 0,3 = 0,7\).

Vì rút không hoàn lại nên \(P\left( {B|A} \right) = \frac{{11}}{{39}}\), \[P\left( {B|\overline A } \right) = \frac{{12}}{{39}} = \frac{4}{{13}}\].

Theo công thức xác suất toàn phần, ta có:

\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,3.\frac{{11}}{{39}} + 0,7.\frac{4}{{13}} = 0,3\].

Câu 5

a) Vận tốc của vật tại thời điểm \(t\) giây là \(v\left( t \right) = \int {a\left( t \right)dt} \).
Đúng
Sai
b) Vận tốc của vật tại thời điểm \(t\) giây là \(v\left( t \right) = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + 4\ln 2\).
Đúng
Sai
c) Vào thời điểm \(t = 10\;{\rm{s}}\) thì vận tốc của vật là \(2,86\;{\rm{m/s}}\).
Đúng
Sai
d) Không có thời điểm nào vận tốc của vật đạt \(v = 4\ln 2\;\left( {{\rm{m/s}}} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(0,1\).                 
B. \(0,2\).                 
C. \(0,3\).                          
D. \(0,4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Đường thẳng \({d_1}\) có vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1; - 1;1} \right)\).
Đúng
Sai
b) Mặt phẳng đi qua điểm \(A\) và vuông góc với đường thẳng \({d_2}\) có phương trình là \(3x + 3y + z - 3 = 0\).
Đúng
Sai
c) Đường thẳng \(d\) có vectơ chỉ phương là \(\overrightarrow {{u_d}} = \left( {6;5;3} \right)\).
Đúng
Sai
d) Đường thẳng \(d\) đi qua điểm \(K\left( {13; - 11;9} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP