Một xưởng máy sử dụng một loại linh kiện được sản xuất từ hai cơ sở I và II. Số linh kiện do cơ sở I sản xuất chiếm \(61\)%, số linh kiện do cơ sở II sản xuất chiếm \(39\)%. Tỉ lệ linh kiện đạt tiêu chuẩn của cơ sở I, cơ sở II lần lượt là 93%, 82%. Kiểm tra ngẫu nhiên 1 linh kiện ở xưởng máy. Xét các biến cố:\({A_1}\): “Linh kiện được kiểm tra do cơ sở I sản xuất”;\({A_2}\): “Linh kiện được kiểm tra do cơ sở II sản xuất”;\(B\): “Linh kiện được kiểm tra đạt tiêu chuẩn”.
Quảng cáo
Trả lời:
a) S, b) Đ, c) Đ, d) S
a) Do \({\rm{P}}\left( {{A_1}} \right) = 0,61\).
b) \({\rm{P}}\left( {B\mid {A_2}} \right) = \frac{{{\rm{P}}\left( {B \cap {A_2}} \right)}}{{{\rm{P}}\left( {{A_2}} \right)}} = 0,82\).
c) Ta có: \({\rm{P}}\left( {{A_1}} \right) = 0,61;{\rm{P}}\left( {{A_2}} \right) = 0,39;{\rm{P}}\left( {B\mid {A_1}} \right) = 0,93;{\rm{P}}\left( {B\mid {A_2}} \right) = 0,82\).
Theo công thức xác suất toàn phần, ta có:
\({\rm{P}}\left( B \right) = {\rm{P}}\left( {{A_1}} \right){\rm{.P}}\left( {B\mid {A_1}} \right) + {\rm{P}}\left( {{A_2}} \right){\rm{.P}}\left( {B\mid {A_2}} \right) = 0,61.0,93 + 0,39.0,82 = 0,8871\).
d) Theo công thức Bayes, ta có: \({\rm{P}}\left( {{A_1}\mid B} \right) = \frac{{{\rm{P}}\left( {{A_1}} \right){\rm{.P}}\left( {B\mid {A_1}} \right)}}{{{\rm{P}}\left( B \right)}} = \frac{{0,61 \cdot 0,93}}{{0,8871}} \approx 0,64\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Ta có \(V = \pi \int\limits_0^3 {{{\left( {\frac{1}{3}{x^3} - {x^2}} \right)}^2}dx} = \frac{{81\pi }}{{35}}\).
Lời giải
Trả lời: 0,3
Xét các biến cố: \(A\): “Lần thứ nhất rút ra được thẻ ghi số nguyên tố”;
\(B\): “Lần thứ hai rút được thẻ ghi số nguyên tố”.
Từ \(1\) đến \(40\) có \(12\) số nguyên tố nên \(P\left( A \right) = \frac{{12}}{{40}} = 0,3\) và \(P\left( {\overline A } \right) = 1 - 0,3 = 0,7\).
Vì rút không hoàn lại nên \(P\left( {B|A} \right) = \frac{{11}}{{39}}\), \[P\left( {B|\overline A } \right) = \frac{{12}}{{39}} = \frac{4}{{13}}\].
Theo công thức xác suất toàn phần, ta có:
\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,3.\frac{{11}}{{39}} + 0,7.\frac{4}{{13}} = 0,3\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
