Cho hai đường thẳng song song \({d_1},\,\,\,{d_2}\). Trên \({d_1}\) có 6 điểm phân biệt được tô màu đỏ, trên \({d_2}\) có 4 điểm phân biệt được tô màu xanh. Xét tất cả các tam giác được tạo thành khi nối các điểm đó với nhau. Chọn ngẫu nhiên một tam giác, khi đó xác suất để thu được tạm giác có hai đỉnh màu đỏ là
Cho hai đường thẳng song song \({d_1},\,\,\,{d_2}\). Trên \({d_1}\) có 6 điểm phân biệt được tô màu đỏ, trên \({d_2}\) có 4 điểm phân biệt được tô màu xanh. Xét tất cả các tam giác được tạo thành khi nối các điểm đó với nhau. Chọn ngẫu nhiên một tam giác, khi đó xác suất để thu được tạm giác có hai đỉnh màu đỏ là
Quảng cáo
Trả lời:
Đáp án
\(\frac{5}{8}\).
Giải thích
Số phần tử của không gian mẫu: \(n\left( {\rm{\Omega }} \right) = C_6^1.C_4^2 + C_6^2.C_4^1 = 96\).
Gọi \(A\) là biến cố "thu được tam giác có hai đỉnh màu đỏ". \(n\left( A \right) = C_6^2.C_4^1\).
Vậy \(P\left( A \right) = \frac{{C_6^2.C_4^1}}{{96}} = \frac{5}{8}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án
\(\frac{{12a}}{5}\).
Giải thích

Trong mặt phẳng \(\left( {ABCD} \right)\) dựng \(BI \bot HC\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\left( {SAB} \right) \cap \left( {SHC} \right) = SH}\\{\left( {SAB} \right) \bot \left( {ABCD} \right);\left( {SHC} \right) \bot \left( {ABCD} \right)}\end{array} \Rightarrow SH \bot \left( {ABCD} \right)} \right.\).
Khi đó, \(\left\{ {\begin{array}{*{20}{l}}{BI \bot HC}\\{BI \bot SH}\end{array} \Rightarrow BI \bot \left( {SHC} \right) \Rightarrow d\left( {B,\left( {SHC} \right)} \right) = BI} \right.\).
Xét trong tam giác \(BHC\) vuông tại \(B\) ta có:
\(\frac{1}{{B{I^2}}} = \frac{1}{{B{H^2}}} + \frac{1}{{B{C^2}}} = \frac{1}{{{{(3a)}^2}}} + \frac{1}{{{{(4a)}^2}}} = \frac{{25}}{{144{a^2}}} \Rightarrow BI = \frac{{12a}}{5}\).
Vậy khoảng cách từ B đến mặt phẳng \(\left( {SHC} \right)\) bằng \(\frac{{12a}}{5}\).
Câu 2
Lời giải
Đáp án
sức điện động của pin đo bằng Vôn kế.
Giải thích
Trong pin Galvani sức điện động của pin đo bằng Vôn kế.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

