Rút gọn biểu thức sau:
\[P = \left( {\frac{{x - 108 + 23\sqrt x }}{{x - 16}} - 1} \right)\,:\,\left( {\frac{{75 - x}}{{x + \sqrt x - 12}} + \frac{{\sqrt x + 3}}{{\sqrt x + 4}}} \right)\,,\,\left( {x > 0,\,x \ne 9,\,x \ne 16} \right)\].
Rút gọn biểu thức sau:
\[P = \left( {\frac{{x - 108 + 23\sqrt x }}{{x - 16}} - 1} \right)\,:\,\left( {\frac{{75 - x}}{{x + \sqrt x - 12}} + \frac{{\sqrt x + 3}}{{\sqrt x + 4}}} \right)\,,\,\left( {x > 0,\,x \ne 9,\,x \ne 16} \right)\].
Quảng cáo
Trả lời:
Điều kiện \[\left\{ \begin{array}{l}x > 0\\x \ne 9\\x \ne 16\end{array} \right.\].
Ta có \[P = \left( {\frac{{x - 108 + 23\sqrt x }}{{x - 16}} - 1} \right)\,:\,\left( {\frac{{75 - x}}{{x + \sqrt x - 12}} + \frac{{\sqrt x + 3}}{{\sqrt x + 4}}} \right)\,\]
\[ = \left( {\frac{{x - 16 + 23\sqrt x - 92}}{{x - 16}} - 1} \right)\,:\,\left[ {\frac{{\left( {75 - x} \right)\left( {\sqrt x + 4} \right) + \left( {\sqrt x + 3} \right)\left( {x + \sqrt x - 12} \right)}}{{\left( {\sqrt x + 4} \right)\left( {x + \sqrt x - 12} \right)}}} \right]\,\,\]
\[ = \frac{{23\left( {\sqrt x - 4} \right)}}{{{{\left( {\sqrt x } \right)}^2} - 16}}\,:\,\,\left[ {\frac{{75\sqrt x + 300 - x\sqrt x - 4x + x\sqrt x + x - 12\sqrt x + 3x + 3\sqrt x - 36}}{{\left( {\sqrt x + 4} \right)\left( {x + \sqrt x - 12} \right)}}} \right]\,\]
\[ = \frac{{23}}{{\sqrt x + 4}}\,:\,\left[ {\frac{{66\sqrt x + 264}}{{\left( {\sqrt x + 4} \right)\left( {x + \sqrt x - 12} \right)}}} \right]\]\[ = \frac{{23\left( {x - 16 + \sqrt x + 4} \right)}}{{66\left( {\sqrt x + 4} \right)}}\, = \frac{{23}}{{66}}\left( {\sqrt x - 3} \right)\]Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Từ giả thiết \[abc = 2023\], ta có \[M = \frac{{2023a}}{{ab + 2023a + 2023}} + \frac{b}{{bc + b + 2023}} + \frac{c}{{ca + c + 1}}\] \[ = \frac{{{a^2}bc}}{{ab + {a^2}bc + abc}} + \frac{b}{{bc + b + abc}} + \frac{c}{{ac + c + 1}}\]\[ = \frac{{{a^2}bc}}{{ab\left( {ac + c + 1} \right)}} + \frac{b}{{b\left( {ac + c + 1} \right)}} + \frac{c}{{ca + c + 1}}\] \[ = \frac{{ac}}{{ac + c + 1}} + \frac{1}{{ac + c + 1}} + \frac{c}{{ac + c + 1}}\]\[ = \frac{{ac + c + 1}}{{ac + c + 1}} = 1\] |
|
b) Từ giả thiết \[a\] và \[b\] là hai nghiệm của phương trình \[{x^2} - 2025nx - 2024 = 0\] \[c\] và \[d\] là hai nghiệm của phương trình \[{x^2} - 2023nx - 2024 = 0\]. Theo định lí Viet, ta có \[\left\{ \begin{array}{l}a + b = 2025n\\ab = - 2024\end{array} \right.\] và \[\left\{ \begin{array}{l}c + d = 2023n\\cd = - 2024\end{array} \right.\,\,\left( {n \in {\mathbb{N}^*}} \right)\]. Do đó \[\left( {a - c} \right)\left( {b - c} \right)\left( {a + d} \right)\left( {b + d} \right) = \left[ {\left( {a - c} \right)\,\left( {b + d} \right)} \right].\left[ {\left( {b - c} \right)\,\left( {a + d} \right)} \right]\] \[ = \left( {ab + ad - bc - cd} \right)\left( {ab + bd - ac - cd} \right)\]\[ = \left( {ad - bc} \right)\left( {bd - ac} \right)\] \[ = ab{d^2} - {a^2}cd - {b^2}cd + ab{c^2} = 2024\left( {{a^2} + {b^2}} \right) - 2024\left( {{c^2} + {d^2}} \right)\] \[ = 2024\left[ {{{\left( {a + b} \right)}^2} - {{\left( {c + d} \right)}^2}} \right] = 2024\left[ {{{\left( {2025n} \right)}^2} - {{\left( {2023n} \right)}^2}} \right]\] \[ = {\left( {4048n} \right)^2}\,\,\,\,\left( {n \in {\mathbb{N}^*}} \right)\] là một số chính phương (đpcm). |
Lời giải
Bổ đề (BĐT Cauchy – Schwarz): Cho 6 số thực \[a,\,b,\,c,\,x,\,y,\,z\] và \[x,\,y,\,z > 0\]. Khi đó:
\[\frac{{{a^2}}}{x} + \frac{{{b^2}}}{y} + \frac{{{c^2}}}{z} \ge \frac{{{{\left( {a + b + c} \right)}^2}}}{{x + y + z}}\] (1), dấu xảy ra khi \[\frac{a}{x} = \frac{b}{y} = \frac{c}{z}\].
Chứng minh
Trước hết ta chứng minh BĐT sau: Với 4 số thực \[a,\,b,\,x,\,y\] và \[x,\,y > 0\]. Ta có:
\[\frac{{{a^2}}}{x} + \frac{{{b^2}}}{y} \ge \frac{{{{\left( {a + b} \right)}^2}}}{{x + y}}\] (2), dấu xảy ra khi \[\frac{a}{x} = \frac{b}{y}\].
Thật vậy, ta viết BĐT (2) dưới dạng:
\[{a^2}y\left( {x + y} \right) + {b^2}x\left( {x + y} \right) \ge {\left( {a + b} \right)^2}xy \Leftrightarrow {\left( {ay - bx} \right)^2} \ge 0\] (luôn đúng). Dấu xảy ra khi \[\frac{a}{x} = \frac{b}{y}\].
Áp dụng BĐT (2) hai lần ta được: \[\frac{{{a^2}}}{x} + \frac{{{b^2}}}{y} + \frac{{{c^2}}}{z} \ge \frac{{{{\left( {a + b} \right)}^2}}}{{x + y}} + \frac{{{c^2}}}{z} \ge \frac{{{{\left( {a + b + c} \right)}^2}}}{{x + y + z}}\]. Dấu xảy ra khi \[\frac{a}{x} = \frac{b}{y} = \frac{c}{z}\].
Theo Bổ đề (1) ta có: \[\sum\limits_{cyc} {\frac{{{a^2}}}{{\sqrt {3{a^2} + 8{b^2} + 14ab} }} \ge \frac{{{{\left( {a + b + c} \right)}^2}}}{{\sum\limits_{cyc} {\sqrt {3{a^2} + 8{b^2} + 14ab} } }}} \].
Mặt khác, theo BĐT GM – AM:
\[\sum\limits_{cyc} {\sqrt {3{a^2} + 8{b^2} + 14ab} = \sum\limits_{cyc} {\left( {\sqrt {3a + 2b} \cdot \sqrt {a + 4b} } \right)} \le } \sum\limits_{cyc} {\frac{{\left( {3a + 2b} \right)\left( {a + 4b} \right)}}{2} = 5\left( {a + b + c} \right)} \]
\[ \Rightarrow \sum\limits_{cyc} {\frac{{{a^2}}}{{\sqrt {3{a^2} + 8{b^2} + 14ab} }} \ge \frac{{{{\left( {a + b + c} \right)}^2}}}{{5\left( {a + b + c} \right)}} = \frac{{a + b + c}}{5}} \]
Hay \[\sum\limits_{cyc} {\frac{{{a^2}}}{{\sqrt {3{a^2} + 8{b^2} + 14ab} }} \ge \frac{{a + b + c}}{5}} \] (đpcm).
Dấu xảy ra khi \[a = b = c\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.