Trên mặt phẳng tọa độ \[Oxy\], cho parabol \[\left( P \right)\,:\,y = {x^2}\] và đường thẳng \[\left( d \right)\,:\,y = - x + 6\] cắt
nhau tại hai điểm phân biệt \[A,\,B\]. Tính tổng độ dài \[OA\] và \[OB\] (làm tròn kết quả đến chữ số thập phân thứ hai).
Trên mặt phẳng tọa độ \[Oxy\], cho parabol \[\left( P \right)\,:\,y = {x^2}\] và đường thẳng \[\left( d \right)\,:\,y = - x + 6\] cắt
nhau tại hai điểm phân biệt \[A,\,B\]. Tính tổng độ dài \[OA\] và \[OB\] (làm tròn kết quả đến chữ số thập phân thứ hai).
Quảng cáo
Trả lời:
Phương trình hoành độ giao điểm của parabol \[\left( P \right)\,\]và đường thẳng \[\left( d \right)\,\]là
\[{x^2} = - x + 6 \Leftrightarrow {x^2} + x - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = 2\end{array} \right.\]
Tọa độ giao điểm \[A,\,B\] của \[\left( P \right)\,\]và \[\left( d \right)\,\]là \[A\left( { - 3\,;\,9} \right),\,B\left( {2\,;\,4} \right)\].
Do đó, tổng độ dài của hai đoạn thẳng \[OA\] và \[OB\] là
\[T = OA + OB = \sqrt {{{\left( {0 + 3} \right)}^2} + {{\left( {0 - 9} \right)}^2}} + \sqrt {{{\left( {0 - 2} \right)}^2} + {{\left( {0 - 4} \right)}^2}} = \sqrt {90} + \sqrt {20} \approx 13,96\].Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Từ giả thiết \[abc = 2023\], ta có \[M = \frac{{2023a}}{{ab + 2023a + 2023}} + \frac{b}{{bc + b + 2023}} + \frac{c}{{ca + c + 1}}\] \[ = \frac{{{a^2}bc}}{{ab + {a^2}bc + abc}} + \frac{b}{{bc + b + abc}} + \frac{c}{{ac + c + 1}}\]\[ = \frac{{{a^2}bc}}{{ab\left( {ac + c + 1} \right)}} + \frac{b}{{b\left( {ac + c + 1} \right)}} + \frac{c}{{ca + c + 1}}\] \[ = \frac{{ac}}{{ac + c + 1}} + \frac{1}{{ac + c + 1}} + \frac{c}{{ac + c + 1}}\]\[ = \frac{{ac + c + 1}}{{ac + c + 1}} = 1\] |
|
b) Từ giả thiết \[a\] và \[b\] là hai nghiệm của phương trình \[{x^2} - 2025nx - 2024 = 0\] \[c\] và \[d\] là hai nghiệm của phương trình \[{x^2} - 2023nx - 2024 = 0\]. Theo định lí Viet, ta có \[\left\{ \begin{array}{l}a + b = 2025n\\ab = - 2024\end{array} \right.\] và \[\left\{ \begin{array}{l}c + d = 2023n\\cd = - 2024\end{array} \right.\,\,\left( {n \in {\mathbb{N}^*}} \right)\]. Do đó \[\left( {a - c} \right)\left( {b - c} \right)\left( {a + d} \right)\left( {b + d} \right) = \left[ {\left( {a - c} \right)\,\left( {b + d} \right)} \right].\left[ {\left( {b - c} \right)\,\left( {a + d} \right)} \right]\] \[ = \left( {ab + ad - bc - cd} \right)\left( {ab + bd - ac - cd} \right)\]\[ = \left( {ad - bc} \right)\left( {bd - ac} \right)\] \[ = ab{d^2} - {a^2}cd - {b^2}cd + ab{c^2} = 2024\left( {{a^2} + {b^2}} \right) - 2024\left( {{c^2} + {d^2}} \right)\] \[ = 2024\left[ {{{\left( {a + b} \right)}^2} - {{\left( {c + d} \right)}^2}} \right] = 2024\left[ {{{\left( {2025n} \right)}^2} - {{\left( {2023n} \right)}^2}} \right]\] \[ = {\left( {4048n} \right)^2}\,\,\,\,\left( {n \in {\mathbb{N}^*}} \right)\] là một số chính phương (đpcm). |
Lời giải
Bổ đề (BĐT Cauchy – Schwarz): Cho 6 số thực \[a,\,b,\,c,\,x,\,y,\,z\] và \[x,\,y,\,z > 0\]. Khi đó:
\[\frac{{{a^2}}}{x} + \frac{{{b^2}}}{y} + \frac{{{c^2}}}{z} \ge \frac{{{{\left( {a + b + c} \right)}^2}}}{{x + y + z}}\] (1), dấu xảy ra khi \[\frac{a}{x} = \frac{b}{y} = \frac{c}{z}\].
Chứng minh
Trước hết ta chứng minh BĐT sau: Với 4 số thực \[a,\,b,\,x,\,y\] và \[x,\,y > 0\]. Ta có:
\[\frac{{{a^2}}}{x} + \frac{{{b^2}}}{y} \ge \frac{{{{\left( {a + b} \right)}^2}}}{{x + y}}\] (2), dấu xảy ra khi \[\frac{a}{x} = \frac{b}{y}\].
Thật vậy, ta viết BĐT (2) dưới dạng:
\[{a^2}y\left( {x + y} \right) + {b^2}x\left( {x + y} \right) \ge {\left( {a + b} \right)^2}xy \Leftrightarrow {\left( {ay - bx} \right)^2} \ge 0\] (luôn đúng). Dấu xảy ra khi \[\frac{a}{x} = \frac{b}{y}\].
Áp dụng BĐT (2) hai lần ta được: \[\frac{{{a^2}}}{x} + \frac{{{b^2}}}{y} + \frac{{{c^2}}}{z} \ge \frac{{{{\left( {a + b} \right)}^2}}}{{x + y}} + \frac{{{c^2}}}{z} \ge \frac{{{{\left( {a + b + c} \right)}^2}}}{{x + y + z}}\]. Dấu xảy ra khi \[\frac{a}{x} = \frac{b}{y} = \frac{c}{z}\].
Theo Bổ đề (1) ta có: \[\sum\limits_{cyc} {\frac{{{a^2}}}{{\sqrt {3{a^2} + 8{b^2} + 14ab} }} \ge \frac{{{{\left( {a + b + c} \right)}^2}}}{{\sum\limits_{cyc} {\sqrt {3{a^2} + 8{b^2} + 14ab} } }}} \].
Mặt khác, theo BĐT GM – AM:
\[\sum\limits_{cyc} {\sqrt {3{a^2} + 8{b^2} + 14ab} = \sum\limits_{cyc} {\left( {\sqrt {3a + 2b} \cdot \sqrt {a + 4b} } \right)} \le } \sum\limits_{cyc} {\frac{{\left( {3a + 2b} \right)\left( {a + 4b} \right)}}{2} = 5\left( {a + b + c} \right)} \]
\[ \Rightarrow \sum\limits_{cyc} {\frac{{{a^2}}}{{\sqrt {3{a^2} + 8{b^2} + 14ab} }} \ge \frac{{{{\left( {a + b + c} \right)}^2}}}{{5\left( {a + b + c} \right)}} = \frac{{a + b + c}}{5}} \]
Hay \[\sum\limits_{cyc} {\frac{{{a^2}}}{{\sqrt {3{a^2} + 8{b^2} + 14ab} }} \ge \frac{{a + b + c}}{5}} \] (đpcm).
Dấu xảy ra khi \[a = b = c\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.