Cho biểu thức \({\rm{P}} = \frac{{{\rm{x}} + {\rm{y}}}}{{\sqrt {\rm{x}} - \sqrt {\rm{y}} }}:\left( {\frac{{\sqrt {\rm{x}} }}{{\sqrt {\rm{y}} }} - \frac{{\rm{x}}}{{\sqrt {{\rm{xy}}} + {\rm{y}}}} - \frac{{\sqrt {{\rm{xy}}} }}{{\sqrt {{\rm{xy}}} - {\rm{x}}}}} \right)\) và biểu thức \({\rm{Q}} = \frac{{{\rm{x}}\sqrt {\rm{x}} - {\rm{y}}\sqrt {\rm{y}} - {\rm{x}}\sqrt {\rm{y}} + {\rm{y}}\sqrt {\rm{x}} }}{{2\left( {\sqrt {\rm{x}} - \sqrt {\rm{y}} {\rm{\;}}} \right)}}\) với \({\rm{x}} > 0,{\rm{\;y}} > 0\) và \({\rm{x}} \ne {\rm{y}}\). Rút gọn các biểu thức P, Q và chứng minh rằng với các số x, y dương phân biệt tuỳ ý thì 4Q+1 > 2P.
Cho biểu thức \({\rm{P}} = \frac{{{\rm{x}} + {\rm{y}}}}{{\sqrt {\rm{x}} - \sqrt {\rm{y}} }}:\left( {\frac{{\sqrt {\rm{x}} }}{{\sqrt {\rm{y}} }} - \frac{{\rm{x}}}{{\sqrt {{\rm{xy}}} + {\rm{y}}}} - \frac{{\sqrt {{\rm{xy}}} }}{{\sqrt {{\rm{xy}}} - {\rm{x}}}}} \right)\) và biểu thức \({\rm{Q}} = \frac{{{\rm{x}}\sqrt {\rm{x}} - {\rm{y}}\sqrt {\rm{y}} - {\rm{x}}\sqrt {\rm{y}} + {\rm{y}}\sqrt {\rm{x}} }}{{2\left( {\sqrt {\rm{x}} - \sqrt {\rm{y}} {\rm{\;}}} \right)}}\) với \({\rm{x}} > 0,{\rm{\;y}} > 0\) và \({\rm{x}} \ne {\rm{y}}\). Rút gọn các biểu thức P, Q và chứng minh rằng với các số x, y dương phân biệt tuỳ ý thì 4Q+1 > 2P.
Quảng cáo
Trả lời:
Cho biểu thức \({\rm{P}} = \frac{{{\rm{x}} + {\rm{y}}}}{{\sqrt {\rm{x}} - \sqrt {\rm{y}} }}:\left( {\frac{{\sqrt {\rm{x}} }}{{\sqrt {\rm{y}} }} - \frac{{\rm{x}}}{{\sqrt {{\rm{xy}}} + {\rm{y}}}} - \frac{{\sqrt {{\rm{xy}}} }}{{\sqrt {{\rm{xy}}} - {\rm{x}}}}} \right)\) và biểu thức \({\rm{Q}} = \frac{{{\rm{x}}\sqrt {\rm{x}} - {\rm{y}}\sqrt {\rm{y}} - {\rm{x}}\sqrt {\rm{y}} + {\rm{y}}\sqrt {\rm{x}} }}{{2\left( {\sqrt {\rm{x}} - \sqrt {\rm{y}} {\rm{\;}}} \right)}}\) với \({\rm{x}} > 0,{\rm{\;y}} > 0\) và \({\rm{x}} \ne {\rm{y}}\). Rút gọn các biểu thức P, Q và chứng minh rằng với các số x, y dương phân biệt tuỳ ý thì 4Q+1>2P.
\(P = \sqrt x + \sqrt y \Rightarrow 2P = 2\sqrt x + 2\sqrt y \)
\(Q = \frac{{x + y}}{2} \Rightarrow 4Q + 1 = 2\left( {x + y} \right) + 1\)
Nhân hai vế của biểu thức \(4Q + 1 - 2P\) cho 2
\(2\left( {4Q + 1 - 2P} \right) = 4x + 4y + 2 - 4\sqrt x - 4\sqrt y \)
\( = {\left( {2\sqrt x - 1} \right)^2} + {\left( {2\sqrt y - 1} \right)^2}\)
Ta có \(x \ne y \Rightarrow 2\left( {4Q + 1 - 2P} \right) > 0\)\( \Rightarrow 4Q + 1 > 2P\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Chứng minh \(A,O,E\)và CF là tia phân giác của \(\widehat {BCE}\).
b) Các tia AB, AC lần lượt cắt đường tròn đường kính AD tại các điểm G, K (khác A). Chứng minh rằng OD đi qua trung điểm của đoạn thẳng GK.
a) + Xét đường tròn đường kính OD:
\(\widehat {OED} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)
+Xét đường tròn đường kính AD:
\(\widehat {AED} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)
\( \Rightarrow \widehat {OED} = \widehat {AED} = 90^\circ \)
\( \Rightarrow \overline {A,O,E} \)
+Trong đường tròn đường kính AD:
\(\widehat {BCE} = \widehat {BOE}\) (cùng chắn )
+ Trong đường tròn (O):
\(\widehat {BCF} = \frac{1}{2}\;\widehat {BOE}\;\) (góc nội tiếp và góc ở tâm cùng chắn )
\( \Rightarrow \widehat {BCF} = \frac{1}{2}\;\widehat {BCE}\)
\( \Rightarrow \) CF là tia phân giác của \(\widehat {BCE}\)
b) + Gọi I là giao điểm thức hai của AD và (O) và L là giao điểm của GK và OD.
+ Gội M là giao điểm của OD và BC. Dễ dàng ta chứng minh được OD là trung trực của BC.
\(\widehat {CMD} = 90^\circ \;m\`a \;\widehat {CKD} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn đường kính AD)
\( \Rightarrow \) CMDK nộp tiếp\( \Rightarrow \widehat {LDK} = \widehat {ACB}\), mà \(\widehat {ACB} = \widehat {AIB}\) (cùng chắn của (O))\( \Rightarrow \widehat {LDK} = \widehat {AIB}\)
+ \(\widehat {BAI} = \widehat {DKL}\) (cùng chắn của đường tròn đường kính AD)
Ta được: (g – g ) \( \Rightarrow \frac{{LK}}{{LD}} = \frac{{BA}}{{BI}}\)
Tương tự: (g – g ) \( \Rightarrow \frac{{LG}}{{LD}} = \frac{{CA}}{{CI}}\)
Mà \(\frac{{BA}}{{BI}} = \frac{{CA}}{{CI}}\)
Đây là bổ đề quen thuộc từ hai tiếp tuyến và một cát tuyến, ta chứng minh được như sau:
(g – g) \( \Rightarrow \frac{{BA}}{{BI}} = \frac{{BD}}{{DI}}\)
(g – g) \( \Rightarrow \frac{{CA}}{{CI}} = \frac{{CD}}{{DI}}\)
Mà \(\frac{{BD}}{{DI}} = \frac{{CD}}{{DI}}\) nên \(\frac{{BA}}{{BI}} = \frac{{CA}}{{CI}}\)
Do đó: \(\frac{{LK}}{{LD}} = \frac{{LG}}{{KD}} \Rightarrow LK = LG\)
Vậy OD đi qua trung điểm L của GK
Lời giải
Cho tam giác nhọn ABC có AB < AC < BC, đường tròn (O) nội tiếp tam giác ABC tiếp xúc với cạnh AB tại M. Lấy điểm E nằm giữa A và M. Trên cạnh AC, BC lần lượt lấy điểm D, F sao cho AD = AE và BF = BE. Đường tròn ngoại tiếp tam giác DEF lần lượt cắt AB và BC tại G (khác E) và H (khác F). Chứng minh rằng (O) là tâm đường tròn ngoại tiếp tam giác DEF và các đường thẳng CM, ED, GH đồng quy.

Gọi S là giao của DE và GH. Ta đi chứng minh C, M, S thẳng hàng.
Ta có \(\widehat {ADE} = \widehat {AED} = \widehat {DHS} \Rightarrow \)CD là tiếp tuyến của (SHD) tại D
Tương tự ta cũng có CH là tiếp tuyến của (SHD) tại H
Khi đó SC là đường đối trung của tam giác SHD
Gọi N là trung điểm HD. Theo bổ đề đường dối trung, ta có:
\(\widehat {HSN} = \widehat {CSD}\) (1) Lại có tam giác SEGSHD
\( \Rightarrow \)Tam giác SEMSHN (Chia đôi tỉ số đường trung tuyến)
\( \Rightarrow \widehat {SEM} = \widehat {HSN}\left( 2 \right)\)
Từ (1) và (2) ta có \(\widehat {CSD} = \widehat {ESM} \Rightarrow \)(đpcm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.