Trên cùng một mặt phẳng toạ độ, cho parabol \(\left( {\rm{P}} \right):{\rm{y}} = {{\rm{x}}^2}\) và đường thẳng \(\left( {\rm{d}} \right):{\rm{y}} = {\rm{kx}} + 5\). Đường thẳng (d) cắt parabol (P) tại hai điểm A và B. Gọi C, D lần lượt là hình chiếu của A, B trên trục Ox.
a) Khi k = -4, tính diện tích hình thanh ABDC.
b) Tìm tất cả các giá trị của k để AD và BC cắt nhau tại 1 điểm nằm trên đường tròn đường kính CD.
Trên cùng một mặt phẳng toạ độ, cho parabol \(\left( {\rm{P}} \right):{\rm{y}} = {{\rm{x}}^2}\) và đường thẳng \(\left( {\rm{d}} \right):{\rm{y}} = {\rm{kx}} + 5\). Đường thẳng (d) cắt parabol (P) tại hai điểm A và B. Gọi C, D lần lượt là hình chiếu của A, B trên trục Ox.
a) Khi k = -4, tính diện tích hình thanh ABDC.
b) Tìm tất cả các giá trị của k để AD và BC cắt nhau tại 1 điểm nằm trên đường tròn đường kính CD.
Quảng cáo
Trả lời:
Trên cùng một mặt phẳng toạ độ, cho parabol \(\left( {\rm{P}} \right):{\rm{y}} = {{\rm{x}}^2}\) và đường thẳng \(\left( {\rm{d}} \right):{\rm{y}} = {\rm{kx}} + 5\). Đường thẳng (d) cắt parabol (P) tại hai điểm A và B. Gọi C, D lần lượt là hình chiếu của A, B trên trục Ox.
a) Khi k=-4, tính diện tích hình thanh ABDC.
b) Tìm tất cả các giá trị của k để AD và BC cắt nhau tại 1 điểm nằm trên đường tròn đường kính CD.

a) Phương trình hoành độ giao điểm của (d) và (P):
\({x^2} = - 4x + 5\)
\( \Leftrightarrow {x^2} + 4x - 5 = 0\)
\(a + b + c = 1 + 4 - 5 = 0\)
\(x = 1,\;x = - 5\)
\(x = 1 \Rightarrow y = {x^2} = 1\)
\(x = - 5 \Rightarrow y = {x^2} = 2\)
\(A\left( { - 5;25} \right)\;v\`a \;B\left( {1;1} \right)\)
Diện tích hình thanh \(ABDC:\)
\(\frac{{\left( {AC + BD} \right).CD}}{2} = \frac{{\left( {25 + 1} \right).6}}{2} = 78\) (đvdt)
b) + Gọi I là giao điểm của AD và BC.
Vì I thuộc đường tròn đường kính CD nên:
(góc nội tiếp chắn nửa đường tròn)
\( \Rightarrow AD \bot BC\)
+ Phương trình hoành độ giao điểm của (d) và (P):
\({x^2} = kx + 5\)
\( \Leftrightarrow {x^2} - kx - 5 = 0\)
\(c.a = - 5 < 0\)
Do đó hai đồ thị luôn cắt nhau tại hai điểm phân biệt có hoành độ trái dấu.
Toạ độ hai giao điểm là \(A\left( {{x_1},\;{y_1}} \right)\;v\`a \;B\left( {{x_2},\;{y_2}} \right)\).
+ Theo định lí Vi-ét: \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = k}\\{{x_1}{x_2} = - 5}\end{array}} \right.\)
+ Phương trình đường thẳng AD có dạng: \(y = ax + b\). Ta có:
\(\left\{ {\begin{array}{*{20}{c}}{{y_1} = a{x_1} + b}\\{{y_D} = a{x_D} + b}\end{array}} \right.\;\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{k{x_1} + 5 = a{x_1} + b}\\{0 = a{x_2} + b\;}\end{array}} \right.\)
\( \Rightarrow k{x_1} + 5 = a\left( {{x_1} - {x_2}} \right)\) (trừ theo vế)
+ Phương trình đường thẳng BC có dạng: \(y = a'x + b'\). Tương tự như trên ta có:
\(k{x_2} + 5 = a'\left( {{x_2} - {x_1}} \right)\)
Nhân theo vế hai ý vừa có được:
\(\left( {k{x_1} + 5} \right)\left( {k{x_2} + 5} \right) = \mathop {\mathop { - a.a'}\limits_{} }\limits_{} .{\left( {{x_1} - {x_2}} \right)^2}\)
\( \Leftrightarrow {k^2}{x_1}{x_2} + 5k\left( {{x_1} + {x_2}} \right) + 25 = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2}\) \( \Leftrightarrow - 5{k^2} + 5{k^2} + 25 = {k^2} + 20\)
\( \Leftrightarrow {k^2} = 5\) \( \Leftrightarrow k = \pm \sqrt 5 \)
Vậy \(k = \pm \sqrt 5 \)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cho biểu thức \({\rm{P}} = \frac{{{\rm{x}} + {\rm{y}}}}{{\sqrt {\rm{x}} - \sqrt {\rm{y}} }}:\left( {\frac{{\sqrt {\rm{x}} }}{{\sqrt {\rm{y}} }} - \frac{{\rm{x}}}{{\sqrt {{\rm{xy}}} + {\rm{y}}}} - \frac{{\sqrt {{\rm{xy}}} }}{{\sqrt {{\rm{xy}}} - {\rm{x}}}}} \right)\) và biểu thức \({\rm{Q}} = \frac{{{\rm{x}}\sqrt {\rm{x}} - {\rm{y}}\sqrt {\rm{y}} - {\rm{x}}\sqrt {\rm{y}} + {\rm{y}}\sqrt {\rm{x}} }}{{2\left( {\sqrt {\rm{x}} - \sqrt {\rm{y}} {\rm{\;}}} \right)}}\) với \({\rm{x}} > 0,{\rm{\;y}} > 0\) và \({\rm{x}} \ne {\rm{y}}\). Rút gọn các biểu thức P, Q và chứng minh rằng với các số x, y dương phân biệt tuỳ ý thì 4Q+1>2P.
\(P = \sqrt x + \sqrt y \Rightarrow 2P = 2\sqrt x + 2\sqrt y \)
\(Q = \frac{{x + y}}{2} \Rightarrow 4Q + 1 = 2\left( {x + y} \right) + 1\)
Nhân hai vế của biểu thức \(4Q + 1 - 2P\) cho 2
\(2\left( {4Q + 1 - 2P} \right) = 4x + 4y + 2 - 4\sqrt x - 4\sqrt y \)
\( = {\left( {2\sqrt x - 1} \right)^2} + {\left( {2\sqrt y - 1} \right)^2}\)
Ta có \(x \ne y \Rightarrow 2\left( {4Q + 1 - 2P} \right) > 0\)\( \Rightarrow 4Q + 1 > 2P\)
Lời giải
Cho tam giác nhọn ABC có AB < AC < BC, đường tròn (O) nội tiếp tam giác ABC tiếp xúc với cạnh AB tại M. Lấy điểm E nằm giữa A và M. Trên cạnh AC, BC lần lượt lấy điểm D, F sao cho AD = AE và BF = BE. Đường tròn ngoại tiếp tam giác DEF lần lượt cắt AB và BC tại G (khác E) và H (khác F). Chứng minh rằng (O) là tâm đường tròn ngoại tiếp tam giác DEF và các đường thẳng CM, ED, GH đồng quy.

Gọi S là giao của DE và GH. Ta đi chứng minh C, M, S thẳng hàng.
Ta có \(\widehat {ADE} = \widehat {AED} = \widehat {DHS} \Rightarrow \)CD là tiếp tuyến của (SHD) tại D
Tương tự ta cũng có CH là tiếp tuyến của (SHD) tại H
Khi đó SC là đường đối trung của tam giác SHD
Gọi N là trung điểm HD. Theo bổ đề đường dối trung, ta có:
\(\widehat {HSN} = \widehat {CSD}\) (1) Lại có tam giác SEGSHD
\( \Rightarrow \)Tam giác SEMSHN (Chia đôi tỉ số đường trung tuyến)
\( \Rightarrow \widehat {SEM} = \widehat {HSN}\left( 2 \right)\)
Từ (1) và (2) ta có \(\widehat {CSD} = \widehat {ESM} \Rightarrow \)(đpcm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.