Câu hỏi:

23/12/2025 48 Lưu

Trên bàn có hai túi kẹo: túi thứ nhất có 18 viên kẹo, túi thứ hai có 21 viên kẹo.An và Bình cùng chơi 1 trò chơi như sau: mỗi lượt chơi, 1 bạn sẽ lấy đi 1 viên kẹo từ 1 túi bất kì hoặc là mỗi túi lấy đi 1 viên kẹo. 2 bạn luân phiên thực hiện lượt chơi của mình.Người đầu tiên không thực hiện được lượt chơi của mình là người thua cuộc, người còn lại là người thắng cuộc.Nếu An là người lấy kẹo trước, hãy chỉ ra chiến thuật chơi của An để An là người thắng cuộc.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đầu tiên An sẽ bốc 1 viên từ túi thứ hai, hai túi lúc này lần lượt có 18 và 20 viên kẹo. Tại lượt tiếp theo, chiến thuật An sẽ là nếu Bình bốc như thế nào thì An sẽ bố y hệt như vậy. Khi đó ta thấy Bình sẽ phải bắt đầu bốc với hai túi đều có số chẵn viên kẹo, hay nói riêng, là còn kẹo. Như vậy khi đến lượt An thì An hoàn toàn có thể sao chép cách bốc của Bình, do cứ túi nào mà Bình bốc thì phải còn kẹo. Khi đó đến lượt Bình thì Bình lại phải bốc với hai túi còn số chẵn viên kẹo, và An vẫn có thể lặp lại chiến thuật như trên. Trong quá trình bốc này, ta thấy An luôn có thể bốc kẹo, cho nên An không thể là người thua cuộc, nói cách khác, An sẽ là người thắng cuộc với chiến thuật này.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) Giả sử đa thức \(f\left( x \right)\;\)có nghiệm hữu tỉ.

Gọi nghiệm của đa thức \(f\left( x \right)\) là \(\frac{a}{b}\) (\(a,b \in Z,\;\left( {a,b} \right) = 1,b \ne 0)\).

Khi đó: \({\left( {\frac{a}{b}} \right)^4} + 2{\left( {\frac{a}{b}} \right)^3} + 3{\left( {\frac{a}{b}} \right)^2} + 2022\frac{a}{b} + 2023 = 0.\)

           \({a^4} + 2{a^3}b + 3{a^2}{b^2} + 2022a{b^3} + 2023{b^4} = 0.\)

           \({a^4} \vdots b.\)

Mà \(\left( {a,b} \right) = 1\) \(b = 1\)\({a^4} + 2{a^3} + 3{a^2} + 2022a + 2023 = 0\)

                                            \(\left\{ {\begin{array}{*{20}{c}}{a < 0}\\{2023 \vdots a}\end{array}} \right.\)

                                            \(a \in \left\{ { - 1; - 2023; - 7; - 17; - 289; - 119} \right\}\)

  Thử các giá trị \(a \in \left\{ { - 1; - 2023; - 7; - 17; - 289; - 119} \right\}\) vào biểu thức \({a^4} + 2{a^3} + 3{a^2} + 2022a + 2023\) ta thấy không có một giá trị nào của a để \({a^4} + 2{a^3} + 3{a^2} + 2022a + 2023 = 0\).Như vậy không tồn tại các số nguyên a,b thoả mãn đề bàiGiả sử trên sai.Từ đây ta có điều phải CM.

2) Từ giả thiết ta suy ra \(ab + bc + ac =  - 1\), có A=\(\left| a \right| + \left| b \right| + \left| c \right|\;,\;\)xét \({A^2} = {a^2} + {b^2} + {c^2} + 2\left| {ab} \right| + 2\left| {bc} \right| + 2\left| {ac} \right|\). Theo bất đẳng thức giá trị tuyêt đối , ta có :

      \({A^2} = {\left( {a + b + c} \right)^2} + 2\left( {\left| {ab} \right| + \left| {bc} \right| + \left| {ac} \right|} \right) + 2 \ge 0 + 2\left| {ab + bc + ac} \right| + 2 = 4\)

Từ đây kết hợp A\(\; \ge 0\)  A\(\; \ge \) 2.Dấu bằng xảy ra nhiều trường hợp, chẳng hạn \(\;\;\left( {a,b,c} \right) = \left( {0,1, - 1} \right)\)

Vậy giá trị nhỏ nhất của A là 2.

Lời giải

Cho hai đường tròn ( {O;R} và ( {O';R'}  cắt nhau tại 2 điểm phân biệt (ảnh 1)

1) Ta thấy OP∥O’Q (do cùng vuông góc với PQ)  \(\frac{{SP}}{{SQ}} = \frac{R}{{R'}}\)

Kẻ O'G'∥OE (G' thuộc SE)  \(\frac{{OE}}{{O'G'}} = \frac{{SO}}{{SO'}} = \frac{R}{{R'}}\) \({\rm{\;}}O'G' = R{\rm{'}}\) G’ thuộc (O’). Lại có: \(\widehat {OEF} + \widehat {O'HG} < {180^{\rm{o}}}\) nên O’H không song song với OE. Do đó, G’ trùng G OE//O’G (ĐPCM)  

2) Gọi SA∩(O’)=C,A.Tương tự phần a ta cũng chứng minh được OC∥AO’.Theo định lí Thales: \(\frac{{SC}}{{SA}} = \frac{{SO}}{{SO'}} = \frac{{SP}}{{SQ}}\)  PC∥AQ  \(\widehat {SAP} = \widehat {SPC} = \widehat {SQA}\)  \(\Delta {\rm{SAP}}\~\Delta {\rm{SQA}}\)  \(\frac{{SA}}{{SQ}} = \frac{{SP}}{{SA}}\)

 \(S{A^2} = SP.SQ\) (ĐPCM)

3, gọi ME\( \cap \left( O \right) = \left\{ {J,E} \right\}.\;\)Vì tính đối xứng nên ta có MB cũng là tiếp tuyến của (O), ta có \(\Delta MJA\~\Delta MAE\;\left( {g,g} \right){\rm{\;v\`a }}\;\Delta MJB\~\Delta MBE\left( {g.g} \right)\) nên ta được

                     \(\frac{{JA}}{{EA}} = \frac{{MJ}}{{MA}} = \frac{{MJ}}{{MB}} = \frac{{JB}}{{EB}}\)

Từ đó ta thu được \(\frac{{EB}}{{EA}} = \frac{{JB}}{{JA}}\) từ đó để ý rằng \(\Delta IAE\~\Delta IJB\;v\`a \;\Delta IBE\~\Delta IJA\;n\^e n\;ta\;\) được

                             \(\frac{{IA}}{{IB}} = \frac{{IA}}{{IE}}.\frac{{IE}}{{IB}} = \frac{{JA}}{{EB}}.\frac{{EA}}{{JB}} = \frac{{EA}}{{EB}}.\frac{{JA}}{{JB}} = \frac{{E{A^2}}}{{E{B^2}}}\)

Bây giờ ta sẽ chứng minh \(\frac{{EA}}{{EB}} = \frac{{HA}}{{HB}}\). Thật vậy, ta có \(S{P^2}\)= SE . SF và \(S{Q^2} = \) SG . SH.

Do đó \(S{B^2}\) = \(S{A^4} = S{P^2}.S{Q^2} = SE.SF.SG.SH\). Mặt khác, từ câu a ta sẽ có \(\frac{{SE}}{{SF}} = \frac{{SG}}{{SH}}\)  hay SE . SH = SG . SF. Như vậy, ta được \(S{A^2} = S{B^2} = {\left( {SE.SH} \right)^2}\) hay \(S{A^2} = S{B^2} = SE.SH\). Từ đó ta thu được (c.g.c) và  và  (c.g.c). Do vậy,

                                   \(\frac{{EA}}{{HA}} = \frac{{SE}}{{SA}} = \frac{{SE}}{{SB}} = \frac{{EB}}{{HB}}\).

Nói cách khác, ta thu được \(\frac{{EA}}{{EB}} = \frac{{HA}}{{HB}}\). Đến đây, đặt  HN \(.\) AB = I’. Chứng minh tương tự như ý trên ta cũng được \(\frac{{I'A}}{{I'B}} = \frac{{H{A^2}}}{{H{B^2}}}\). Từ đó suy ra \(\frac{{IA}}{{IB}} = \) \(\frac{{I'A}}{{I'B}}\) và dẫn đến I\( \equiv \) I’ . Như vậy, N, I, H thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP