(1,5 điểm) Sau một trận bão lớn, một cái cây mọc thẳng đứng ở vị trí \(C\) đã bị gãy ngang tại \(A\) (như hình vẽ). Ngọn cây chạm mặt đất cách gốc một khoảng \(BC = 5{\rm{ m}}\). Biết rằng phần ngọn bị gãy \(AB\) và phần gốc \(AC\) có tỉ lệ \(3:2\).

a) Viết tỉ số lượng giác sin và tan của góc \(ABC\) theo \(AB,\,\,BC,\,\,CA.\)
(1,5 điểm) Sau một trận bão lớn, một cái cây mọc thẳng đứng ở vị trí \(C\) đã bị gãy ngang tại \(A\) (như hình vẽ). Ngọn cây chạm mặt đất cách gốc một khoảng \(BC = 5{\rm{ m}}\). Biết rằng phần ngọn bị gãy \(AB\) và phần gốc \(AC\) có tỉ lệ \(3:2\).

a) Viết tỉ số lượng giác sin và tan của góc \(ABC\) theo \(AB,\,\,BC,\,\,CA.\)
Câu hỏi trong đề: Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án !!
Quảng cáo
Trả lời:
a) Xét tam giác \(ABC\) vuông tại \(C\), ta có: \(\sin \widehat {ABC} = \frac{{AC}}{{AB}},\,\,\tan \widehat {ABC} = \frac{{AC}}{{BC}}.\)
Câu hỏi cùng đoạn
Câu 2:
b) Hỏi chiều cao ban đầu của cây là bao nhiêu mét (kết quả làm tròn đến chữ số thập phân thứ hai)?
b) Hỏi chiều cao ban đầu của cây là bao nhiêu mét (kết quả làm tròn đến chữ số thập phân thứ hai)?
b) Theo đề bài, phần ngọn bị gãy \(AB\) và phần gốc \(AC\) có tỉ lệ \(3:2\) hay \(\frac{{AB}}{{AC}} = \frac{3}{2}\), suy ra \(\frac{{AC}}{{AB}} = \frac{2}{3}\).
Theo câu a, ta có: \(\sin \widehat {ABC} = \frac{{AC}}{{AB}} = \frac{2}{3}\), suy ra \(\alpha = \widehat {ABC} \approx 41^\circ 49'.\)
Mà \(\tan \widehat {ABC} = \frac{{AC}}{{BC}}\) nên \(AC = BC \cdot \tan \widehat {ABC} \approx 5 \cdot \tan 41^\circ 49' \approx 4,47{\rm{\;(m)}}{\rm{.}}\)
Mà \(\frac{{AB}}{{AC}} = \frac{3}{2}\), suy ra \(AB = \frac{3}{2}AC \approx \frac{3}{2} \cdot 4,47 = 6,705{\rm{ (m)}}{\rm{.}}\)
Độ dài cây ban đầu là tổng của phần ngọn bị gãy \(AB\) và phần gốc \(AC\).
Vậy chiều cao ban đầu của cây khoảng: \[4,47 + 6,705 = 11,175 \approx 11,18{\rm{\;(m)}}{\rm{.}}\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Điều kiện xác định \(x \ne 0,\,\,x \ne - 1\).
\(\frac{{x - 1}}{x} + \frac{1}{{x + 1}} = \frac{{2x + 1}}{{{x^2} + x}}\)
\(\frac{{x - 1}}{x} + \frac{1}{{x + 1}} = \frac{{2x + 1}}{{x\left( {x + 1} \right)}}\)
\(\frac{{\left( {x - 1} \right)\left( {x + 1} \right) + x}}{{x\left( {x + 1} \right)}} = \frac{{2x + 1}}{{x\left( {x + 1} \right)}}\)
\({x^2} - 1 + x = 2x + 1\)
\({x^2} + x - 2x - 2 = 0\)
\(x\left( {x + 1} \right) - 2\left( {x + 1} \right) = 0\)
\(\left( {x + 1} \right)\left( {x - 2} \right) = 0\)
\(x + 1 = 0\) hoặc \(x - 2 = 0\)
\(x = - 1\) (loại) hoặc \(x = 2\) (thỏa mãn)
Vậy phương trình có nghiệm là \(x = 2\).Lời giải
Hướng dẫn giải
Gọi khối lượng viên kim cương là \(M\)\(\left( {M > 0} \right).\)
Vì giá bán của viên kim cương tỉ lệ với bình phương khối lượng của nó nên \(T = kM{}^2\) (\(k\) là hằng số và \(k > 0\)).
Khi cắt viên kim cương thành ba phần có khối lượng \(x;\,\,y;\,\,z\) với \(x + y + z = M\).
Giá bán của ba phần tương ứng là \(k{x^2};\,\,k{y^2};\,\,k{z^2}\).
Tổng giá bán của ba phần là \(k{x^2} + k{y^2} + k{z^2} = k\left( {{x^2} + {y^2} + {z^2}} \right)\).
Với mọi \(x;{\mkern 1mu} {\mkern 1mu} y;{\mkern 1mu} {\mkern 1mu} z\) ta có \({\left( {x - y} \right)^2} \ge 0;\,\,\,{\left( {y - z} \right)^2} \ge 0;\,\,\,{\left( {x - z} \right)^2} \ge 0\).
Suy ra \({\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {x - z} \right)^2} \ge 0\)
\(2{x^2} + 2{y^2} + 2{z^2} - 2xy - 2yz - 2zx \ge 0\)
\(3\left( {{x^2} + {y^2} + {z^2}} \right) \ge {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2xz\)
\(3\left( {{x^2} + {y^2} + {z^2}} \right) \ge {\left( {x + y + z} \right)^2}\)
\({x^2} + {y^2} + {z^2} \ge \frac{{{{\left( {x + y + z} \right)}^2}}}{3}\)
\({x^2} + {y^2} + {z^2} \ge \frac{{{M^2}}}{3}\)
Như vậy \(k{x^2} + k{y^2} + k{z^2} \ge k\frac{{{M^2}}}{3}\)hay \(k{x^2} + k{y^2} + k{z^2} \ge \frac{T}{3}\)
Dấu bằng xảy ra khi và chỉ khi \(x = y = z = \frac{M}{3}\).
Như vậy, khi chia viên kim cương thành ba phần bằng nhau thì giá bán giảm mạnh nhất và giảm ba lần.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.