Câu hỏi:

23/12/2025 8 Lưu

a)  Chứng minh \[{p^4} - 1\] chia hết cho 240 với mọi số nguyên tố \[p > 5.\]

b) Lần cắt thứ nhất, bạn An cắt một mảnh giấy hình vuông thành 4 hình vuông nhỏ bằng nhau (hình vẽ). Lần cắt thứ hai, bạn An lấy một trong các hình vuông đó cắt thành 4 hình vuông nhỏ bằng nhau (như lần thứ nhất), và cứ làm như vậy nhiều lần. Hỏi sau bao nhiêu lần cắt thì bạn An có được 55 hình vuông?

a)  Chứng minh \[{p^4} - 1\] chia hết cho 240 với mọi số nguyên tố \[p > 5.\] (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Vì p là số nguyên tố lớn hơn 5 nên p không chia hết cho 2, 3 và 5                      (1)

Ta có \[{p^2}\] là số chính phương \[ \Rightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}{p^2} \equiv 0\left( {\bmod 3} \right)\\{p^2} \equiv 1\left( {\bmod 3} \right)\end{array} \right.\\\left[ \begin{array}{l}{p^2} \equiv 0\left( {\bmod 5} \right)\\{p^2} \equiv 1\left( {\bmod 5} \right)\\{p^2} \equiv 4\left( {\bmod 5} \right)\end{array} \right.\end{array} \right.\]

Kết hợp với (1) \[ \Rightarrow \left\{ \begin{array}{l}{p^2} \equiv 1\left( {\bmod 3} \right)\\\left[ \begin{array}{l}{p^2} \equiv 1\left( {\bmod 5} \right)\\{p^2} \equiv 4\left( {\bmod 5} \right)\end{array} \right.\end{array} \right.\]

\[ \Rightarrow \left\{ \begin{array}{l}{p^4} \equiv 1\left( {\bmod 3} \right)\\{p^4} \equiv 1\left( {\bmod 5} \right)\end{array} \right.\]

\[ \Rightarrow \left\{ \begin{array}{l}\left( {{p^4} - 1} \right)\,\, \vdots \,\,3\\\left( {{p^4} - 1} \right)\,\, \vdots \,\,5\end{array} \right.\]                                           (*)      

Mặt khác từ (1) \[ \Rightarrow p\] lẻ

\[ \Rightarrow {p^4} \equiv 1\left( {\bmod 16} \right)\]

\[ \Rightarrow \left( {{p^4} - 1} \right)\,\, \vdots \,\,16\]                                          (**)

Từ (*), (**) và 3, 5, 16 nguyên tố cùng nhau suy ra \[\left( {{p^4} - 1} \right)\,\, \vdots \,\,\left( {3 \cdot 5 \cdot 16} \right) \Rightarrow \left( {{p^4} - 1} \right)\,\, \vdots \,\,240.\]

Vậy \[{p^4} - 1\] chia hết cho 240 với mọi số nguyên tố \[p > 5.\]

Cách 2:

Do \[p\cancel{ \vdots }3,\,\,p\cancel{ \vdots }5\] nên theo định lí Fecma nhỏ ta có

\[\begin{array}{l}{p^2} - 1\,\, \vdots \,\,3;\,\,{p^4} - 1\,\, \vdots \,\,5\\ \Rightarrow {p^4} - 1\,\, \vdots \,\,15.\end{array}\]

Ta có \[{p^4} - 1 = \left( {p - 1} \right)\left( {p + 1} \right)\left( {{p^2} + 1} \right).\]

Dễ thấy \[p - 1 < p + 1 < {p^2} + 1\]\[p - 1;\,\,p + 1;\,\,{p^2} + 1\] là ba số chẵn.

Mặt khác \[p - 1;\,\,p + 1\] là hai số chẵn liên tiếp \[ \Rightarrow \left( {p - 1} \right)\left( {p + 1} \right)\,\, \vdots \,\,8\]

\[ \Rightarrow \left( {p - 1} \right)\left( {p + 1} \right)\left( {{p^2} + 1} \right)\,\, \vdots \,\,16\]

\[ \Rightarrow {p^4} - 1\,\, \vdots \,\,\left( {16 \cdot 15} \right) = 240.\]

Cách 3:

Ta có \({p^5} - p = p\left( {{p^4} - 1} \right)\)

                    \(\begin{array}{l} = p\left( {{p^2} - 1} \right)\left( {{p^2} + 1} \right)\\ = p\left( {p - 1} \right)\left( {p + 1} \right)\left( {{p^2} - 4 + 5} \right)\\ = \left( {p - 2} \right)\left( {p - 1} \right)p\left( {p + 1} \right)\left( {p + 2} \right) + 5p\left( {p - 1} \right)\left( {p + 1} \right)\end{array}\)

Vì \(p - 2,p - 1,p,p + 1,p + 2\) là 5 số tự nhiên liên tiếp nên tồn tại ít nhất một số chia hết cho 3 và 5

Mà (3,5) = 1

\( \Rightarrow \left( {p - 2} \right)\left( {p + 2} \right)p\left( {p - 1} \right)\left( {p + 1} \right) \vdots 15{\rm{ }}\left( 1 \right)\)

Lại có : P là số nguyên tố >5 nên \[p - 1,p + 1\]là hai số chẵn liên tiếp và \[{p^2} + 1 \vdots 2\]

\( \Rightarrow \left( {p - 1} \right)\left( {p + 1} \right)\left( {{p^2} + 1} \right) \vdots 16{\rm{ }}\left( 2 \right)\)

Từ (1) và (2)\( \Rightarrow \left( {p - 2} \right)\left( {p + 2} \right)p\left( {p - 1} \right)\left( {p + 1} \right) \vdots 240{\rm{ }}\left( {v\`i {\rm{ }}\left( {15,16} \right) = 1} \right)\)

Dễ thấy với p là số nguyên tố >5 thì :

\(\begin{array}{l}{\rm{ }}\left[ \begin{array}{l}p \equiv 1(\bmod 4)\\p \equiv 3(\bmod 4)\end{array} \right.\\ \Rightarrow \left( {p - 1} \right)\left( {p + 1} \right) \vdots 16{\rm{                           }}\left( * \right)\end{array}\)

Mặt khác, \(p,(p - 1),\left( {p + 1} \right)\) là 3 số tự nhiên liên tiếp

\( \Rightarrow p(p - 1)\left( {p + 1} \right) \vdots 3{\rm{    }}\left( {**} \right)\)

Từ (*) và (**)

\( \Rightarrow 5p(p - 1)\left( {p + 1} \right) \vdots 240\)

Suy ra \({p^5} - p \vdots 240\)

Mà (p,240) =1

\( \Rightarrow {p^4} - 1 \vdots 240{\rm{ }}\forall {\rm{p}}\)là số nguyên tố >5(đpcm)

b) Gọi x là số lần cắt để bạn An có được 55 hình vuông (ĐK: \[x \in \mathbb{N}*,\,\,x > 2\]).

- Sau lần cắt thứ nhất bạn An có được \[4 = 3 \cdot 1 + 1\] (hình vuông).

- Sau lần cắt thứ hai bạn An có được \[3 + 4 = 7 = 3 \cdot 2 + 1\] (hình vuông).

- Sau lần cắt thứ ba bạn An có được \[3 + 3 + 4 = 10 = 3 \cdot 3 + 1\] (hình vuông).

....

\[ \Rightarrow \] Sau x lần cắt, bạn An có được \[3x + 1\] (hình vuông).

Theo đề bài, ta có phương trình

\[\begin{array}{l}\,\,\,\,\,\,\,3x + 1 = 55\\ \Leftrightarrow 3x = 54\\ \Leftrightarrow x = \frac{{54}}{3} = 18\,\,(n).\end{array}\]

Vậy sau 18 lần cắt bạn An có được 55 hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Cho biểu thức \[M = \frac{1}{{\sqrt x - \sqrt {x - 1} }} + \frac{1}{{\sqrt x - \sqrt {x - 1} }} - 4 \cdot \frac{{x\sqrt x - x}}{{1 - \sqrt x }},\] với \[x > 1.\]

Rút gọn M và tìm giá trị nhỏ nhất của M.

* Rút gọn \(M\):

\(M = \frac{1}{{\sqrt x - \sqrt {x - 1} }} - \frac{1}{{\sqrt x + \sqrt {x - 1} }} - 4\frac{{x\sqrt x - x}}{{1 - \sqrt x }}\)

       \( = \left( {\sqrt x + \sqrt {x - 1} } \right) - \left( {\sqrt x - \sqrt {x - 1} } \right) - \frac{{4x\left( {\sqrt x - 1} \right)}}{{1 - \sqrt x }}\)

       \( = 2\sqrt {x - 1} + 4x\)

* Tìm giá trị nhỏ nhất của \(M\):

Cách 1: Đặt \(t = \sqrt {x - 1} \,\,\,\,\left( {t > 0} \right)\,\,\, \Rightarrow x = {t^2} + 1\)

Khi đó \(M = 4{t^2} + 2t + 4 = {\left( {2t + \frac{1}{2}} \right)^2} + \frac{{15}}{4} > 4,\,\,\,\forall t > 0\)

\(\begin{array}{l} \Rightarrow M - \frac{{15}}{4} = {\left( {2t + \frac{1}{2}} \right)^2}\\ \Rightarrow \sqrt {M - \frac{{15}}{4}} = 2t + \frac{1}{2}\end{array}\)

Đặt \(y = f\left( t \right) = 2t + \frac{1}{2}\): HS bậc nhất, đồng biến (vì \(a = 2 > 0\))

\(t > 0\) nên \(y = f\left( t \right) > f\left( 0 \right) = \frac{1}{2}\)

\( \Rightarrow \)Không tồn tại min\(y\) \( \Rightarrow \)Không tồn tại min\(M\).

 Cách 2:

Do \(x > 1\) nên \(2\sqrt {x - 1} > 0\)\(4x > 4\). Vậy \(M > 4,\,\,\,\forall x > 1\)

Giả sử \(m\) là GTNN của \(M\) \( \Rightarrow \)\(m > 4\)

Xét phương trình: \(\,\,\,\,\,\,2\sqrt {x - 1} + 4x = n\,\,\,\,\,\,\,\left( 1 \right)\)

                            \( \Leftrightarrow 2\sqrt {x - 1} + 4\left( {x - 1} \right) + 4 - n = 0\)

Đặt \(t = \sqrt {x - 1} \,\,\,\,\left( {t > 0} \right)\,\,\). Phương trình trở thành: \(4{t^2} + 2t + 4 - n = 0\,\,\,\,\,\,\left( 2 \right)\)

\(n > 4\)nên\(4\left( {4 - n} \right) < 0\)\( \Rightarrow \) Phương trình \(\left( 2 \right)\)trái dấu

                                        \( \Rightarrow \) Phương trình \(\left( 2 \right)\)có một nghiệm \(t > 0\)

                                        \( \Rightarrow \) Phương trình \(\left( 1 \right)\)có một nghiệm \(x > 1\)

                                        \( \Rightarrow \) Tồn tại \(x > 1\)để \(M = n\) (Điều này vô lý với giả sử \(m\) là GTNN của \(M\))

Vậy không tồn tại GTNN của \(M\).

Cách 3:

Đặt \(t = \sqrt {x - 1} \,\,\,\,\left( {t > 0} \right)\,\,\, \Rightarrow x = {t^2} + 1\)

Khi đó \[M = 4{t^2} + 2t + 4\]

\[ \Leftrightarrow \frac{M}{4} = {t^2} + \frac{t}{2} + 1 = {\left( {t + \frac{1}{4}} \right)^2} + \frac{{15}}{{16}}\]

\[ \Leftrightarrow \,\frac{M}{4} - \,\frac{{15}}{{16}} = {\left( {t + \frac{1}{4}} \right)^2}\]

\[ \Leftrightarrow \,Y = {X^2}\,\,\]với \(\left\{ \begin{array}{l}Y = \frac{M}{4} - \frac{{15}}{{16}}\\X = t + \frac{1}{4} > \frac{1}{4}\end{array} \right.\)

Giả sử GTNN của \[\,Y = \,{Y_0}\] đạt được khi \[\,X = \,{X_0}\].

Theo định nghĩa ta có: \(\left\{ \begin{array}{l}\forall X > \frac{1}{4}:Y \ge {Y_0}\,\,\,\left( * \right)\\\exists X = {X_0} > \frac{1}{4}:Y\left( {{X_0}} \right) = {Y_0}\,\end{array} \right.\)

\[Y = {X^2}\,\,\]là hàm số đồng biến khi \[\,X > 0\] nên \[Y = {X^2}\,\,\]cũng đồng biến khi \[\,X > \frac{1}{4}\]

Chọn \[\,{X_1} > {X_0} > \frac{1}{4}\]\( \Rightarrow \)\[\,Y\left( {{X_1}} \right) > Y\left( {{X_0}} \right)\]\( \Rightarrow \)\({Y_1} > {Y_0}\) (mâu thuẫn với \(\left( * \right)\))

Vậy không tồn tại GTNN của \(M\).

b) Tìm tất cả các số tự nhiên n sao cho \[A = \sqrt {n + 3} + \sqrt {n + \sqrt {n + 3} } \] là số nguyên.

Cách 1:

Đặt \[m = \sqrt {n + 3} + \sqrt {n + \sqrt {n + 3} } ,m \in \mathbb{Z}*\]

\[\begin{array}{l} \Rightarrow n + \sqrt {n + 3} = {\left( {m - \sqrt {n + 3} } \right)^2} = {m^2} + n + 3 - 2m\sqrt {n + 3} \\ \Rightarrow \sqrt {n + 3} = \frac{{{m^2} + 3}}{{2m + 1}} \in \mathbb{Q}\end{array}\]

Do đó \[\sqrt {n + 3} \in \mathbb{Q}\]

\[n + 3 \in \mathbb{Z} \Rightarrow \sqrt {n + 3} \in \mathbb{Z}\]

\[\begin{array}{l} \Rightarrow 2m + 1\left| {{m^2} + 3} \right. \Rightarrow 2m + 1\left| {4{m^2} + 12} \right.\\ \Rightarrow 2m + 1\left| {\left[ {{{\left( {2m + 1} \right)}^2} - 2(2m + 1) + 13} \right]} \right.\\ \Rightarrow 2m + 1\left| {13} \right.\end{array}\]

\[n \ge 0 \Rightarrow \sqrt {n + 3} \ge \sqrt 3 \Rightarrow m \ge \sqrt 3 + \sqrt {\sqrt 3 } > 3\]

Vậy \[2m + 1 = 13 \Rightarrow m = 6 \Rightarrow \sqrt {n + 3} = \frac{{{6^2} + 3}}{{2.6 + 1}} = 3 \Rightarrow n = 6\]

Vậy \[n = 6\] là số tự nhiên duy nhất tìm được.

Cách 2:

Đặt \(a = n + 3{\rm{ }}v\`a {\rm{ }}b = n + \sqrt {n + 3} \left( {a,b \in N} \right)\)

\( \Rightarrow a - 3 + \sqrt a = b\)

\[\begin{array}{l} \Rightarrow {\left( {\sqrt a + \frac{1}{2}} \right)^2} - b = \frac{{13}}{4}\\ \Rightarrow {\left( {2\sqrt a + 1} \right)^2} - {\left( {2\sqrt b } \right)^2} = 13\\ \Rightarrow \left( {2\sqrt a + 1 - 2\sqrt b } \right).\left( {2\sqrt a + 1 + 2\sqrt b } \right) = 13\end{array}\]

Ta có \(a,b \in N \Rightarrow \left\{ \begin{array}{l}2\sqrt a + 1 + 2\sqrt b > 2\sqrt a + 1 - 2\sqrt b \\2\sqrt a + 1 + 2\sqrt b > 0\end{array} \right.\)

\[\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}2\sqrt a + 1 - 2\sqrt b = 1\\2\sqrt a + 1 + 2\sqrt b = 13\end{array} \right.\\ \Rightarrow a = b = 9\\ \Rightarrow n = 6\end{array}\]

Vậy \[n = 6\]

 

Lời giải

a)    Cách 1:

*) Áp dụng bất đảng thức B-C-S, ta có:

\(\begin{array}{l}\left[ {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} \right]\left[ {{1^2} + {1^2}} \right] \ge {\left[ {\left( {x - 1} \right).1 + \left( {y - 1} \right).1} \right]^2}\\ \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} \ge \frac{{{{\left( {x + y - 2} \right)}^2}}}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)

Dấu “=” xảy ra khi \(\frac{{x - 1}}{1} = \frac{{y - 1}}{1} \Leftrightarrow x = y\)

*) Áp dụng bất đảng thức AM-GM, ta có:

\(\frac{{{{\left( {x + y - 2} \right)}^2}}}{2} + {\left( {z - 1} \right)^2} \ge 2\sqrt {\frac{{{{\left[ {\left( {x + y - 2} \right)\left( {z - 1} \right)} \right]}^2}}}{2}}  = \sqrt 2 \left| {\left( {x + y - 2} \right)\left( {z - 1} \right)} \right|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)

Dấu “=” xảy ra khi \(\frac{{{{\left( {x + y - 2} \right)}^2}}}{2} = {\left( {z - 1} \right)^2}\)

*) Mặt khác: \(\left| {\left( {x + y - 2} \right)\left( {z - 1} \right)} \right| \ge \left( {x + y - 2} \right)\left( {z - 1} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\)

(Dấu “=” xảy ra khi \(\left( {x + y - 2} \right)\left( {z - 1} \right) \ge 0\)).

Từ \(\left( 1 \right)\), \(\left( 2 \right)\) và \(\left( 3 \right)\) ta suy ra:

\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} \ge \sqrt 2 \left( {x + y - 2} \right)\left( {z - 1} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\)

*) Đẳng thức \(\left( 4 \right)\) xảy ra khi: \(\left\{ \begin{array}{l}x = y\\\left| {x + y - 2} \right| = \sqrt 2 \left| {z - 1} \right|\\\left( {x + y - 2} \right)\left( {z - 1} \right) \ge 0\end{array} \right.\)

(Chẳng hạn tại \(x = y = z = 1\))

Cách 2:

Đặt \(\left( {\left( {x - 1} \right),\,\,\left( {y - 1} \right),\,\,\left( {z - 1} \right)} \right) = \left( {a,\,\,b,\,\,c} \right)\)

Ta có: \(VT = {a^2} + {b^2} + {c^2} \ge \frac{{{{\left( {a + b} \right)}^2}}}{2} + {c^2} \ge 2\sqrt {\frac{{{{\left( {a + b} \right)}^2}.{c^2}}}{2}}  = \sqrt 2 \left| {\left( {a + b} \right)c} \right| \ge \sqrt 2 \left( {a + b} \right)c = VP\)

Vậy \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} \ge \sqrt 2 \left( {x + y - 2} \right)\left( {z - 1} \right)\) với mọi \(x,\,\,y,\,\,z \in \mathbb{R}\)

Đẳng thức xảy ra khi và chỉ khi \(x = y = \frac{{z - 1 + \sqrt 2 }}{{\sqrt 2 }}\).

(Chẳng hạn tại \(x = y = z = 1\))

b)     

Giả sử \(k\) là số thực nhỏ nhất để bất đẳng thức sau luôn đúng với mọi \(x,\,\,y,\,\,z \in \mathbb{R}\):

\(k\left[ {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2} + {{\left( {z - 1} \right)}^2}} \right] \ge \left| {\left( {x + y - 2} \right)\left( {z - 1} \right)} \right|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( * \right)\)

\( \Rightarrow \) Bắt đẳng thức \(\left( * \right)\) cũng đúng khi \(x = y\), \(\left| {x + y - 2} \right| = \left| {\sqrt 2 \left( {z - 1} \right)} \right|\)

(Hay \(x = y\), \(\left| {z - 1} \right| = \sqrt 2 \left| {x - 1} \right|\))

Do đó: \(k\left[ {2{{\left( {x - 1} \right)}^2} + 2{{\left( {x - 1} \right)}^2}} \right] \ge \left| {2\left( {x - 1} \right).\sqrt 2 \left( {x - 1} \right)} \right|\)

            \( \Leftrightarrow 4k{\left( {x - 1} \right)^2} \ge 2\sqrt 2 {\left( {x - 1} \right)^2}\) với mọi \(x \in \mathbb{R}\)

Cho \(x = 2\), ta được: \(4k \ge 2\sqrt 2  \Leftrightarrow k \ge \frac{1}{{\sqrt 2 }}\)

*) Ta chứng minh với mọi \(k \ge \frac{1}{{\sqrt 2 }}\) thì bất đẳng thức \(\left( * \right)\) đúng.

Thật vậy:

\(\begin{array}{l}k\left[ {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2} + {{\left( {z - 1} \right)}^2}} \right] = \left( {k - \frac{1}{{\sqrt 2 }}} \right)\left[ {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2} + {{\left( {z - 1} \right)}^2}} \right]\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \frac{1}{{\sqrt 2 }}\left[ {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2} + {{\left( {z - 1} \right)}^2}} \right]\\ \ge \frac{1}{{\sqrt 2 }}\left[ {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2} + {{\left( {z - 1} \right)}^2}} \right]\end{array}\)

\( \ge \frac{1}{{\sqrt 2 }}.\sqrt 2 \left| {\left( {x + y - 2} \right)\left( {z - 1} \right)} \right| = \left| {\left( {x + y - 2} \right)\left( {z - 1} \right)} \right|\) (theo chứng minh của câu a).

Khi \(k = \frac{1}{{\sqrt 2 }}\) thì theo chứng minh câu a ta cũng có bất đẳng thức \(\left( * \right)\) đúng.

Vậy giá trị \(k\) nhỏ nhất cần tìm là \(k = \frac{1}{{\sqrt 2 }}\).