Một bác thợ gốm làm một cái chậu trồng cây, phần trong chậu cây có dạng khối tròn xoay được tạo thành khi quay hình phẳng được tô đậm như hình sau quanh trục \(Ox\)(đơn vị trên trục là đềximét), biết đường cong trong hình là đồ thị của hàm số \(y = \sqrt {x + 1} \), đáy chậu và miệng chậu có đường kính lần lượt là 2 dm và 4 dm. Dung tích của chậu là bao nhiêu? (kết quả làm tròn đến hàng phần mười)

Một bác thợ gốm làm một cái chậu trồng cây, phần trong chậu cây có dạng khối tròn xoay được tạo thành khi quay hình phẳng được tô đậm như hình sau quanh trục \(Ox\)(đơn vị trên trục là đềximét), biết đường cong trong hình là đồ thị của hàm số \(y = \sqrt {x + 1} \), đáy chậu và miệng chậu có đường kính lần lượt là 2 dm và 4 dm. Dung tích của chậu là bao nhiêu? (kết quả làm tròn đến hàng phần mười)

Quảng cáo
Trả lời:
Đáp án:
Trả lời: 23,6
Chọn hệ trục tọa độ như hình vẽ
Theo đề ta có \(\sqrt {x + 1} = 2 \Leftrightarrow x = 3\).
Dung tích của chậu là \(V = \pi \int\limits_0^3 {{{\left( {\sqrt {x + 1} } \right)}^2}dx} \)\( = \pi \int\limits_0^3 {\left( {x + 1} \right)dx} = \frac{{15\pi }}{2} \approx 23,6\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 2

\(\left( {Oxy} \right)\) có 1 vectơ pháp tuyến \(\overrightarrow k = \left( {0;0;1} \right)\).
\(d\) có 1 vectơ chỉ phương \(\overrightarrow u = \left( {0;0;1} \right)\). Nên \(d \bot \left( {Oxy} \right)\).
Gọi \(P = d \cap \left( {Oxy} \right) \Rightarrow P\left( {5; - 1;0} \right)\)
Gọi \(I\)là trung điểm \(AB\) \( \Rightarrow I\left( {1;2;4} \right)\).
\(\widehat {AMB} = 90^\circ \)\( \Rightarrow M\) thuộc mặt cầu \(\left( S \right)\) đường kính \(AB\), bán kính \(R = \frac{{AB}}{2} = \frac{{\sqrt {{{\left( { - 6} \right)}^2} + {8^2} + {0^2}} }}{2} = 5.\)
Mà \(M \in \left( {Oxy} \right)\) nên \(M\) thuộc đường tròn \(\left( C \right)\) là giao của mặt cầu \(\left( S \right)\) và mặt phẳng \(\left( {Oxy} \right)\).
Gọi \(H\) là hình chiếu của \(I\) lên mặt phẳng \(\left( {Oxy} \right)\) \[ \Rightarrow H\left( {1;2;0} \right)\].
Suy ra \(M\) thuộc đường tròn \(\left( C \right)\) tâm \[H\left( {1;2;0} \right)\], bán kính \(r = \sqrt {{R^2} - I{H^2}} = \sqrt {25 - 16} = 3\).
Ta có: \(MN \ge MP \ge HP - r = \sqrt {16 + 9} - 3 = 2\).
Vậy \(M{N_{\min }} = 2\).
Dấu “=” xảy ra khi \(N \equiv P\) và \(H,M,P\) thẳng hàng (\(M\) nằm giữa \(H,P\)).
Lời giải
Trả lời: 5,8
Xét phương trình hoành độ giao điểm \[\sqrt x - 2 = 0 \Leftrightarrow x = 4\].
Thể tích khối tròn xoay tạo thành là
\[V = {\rm{\pi }}\int\limits_4^9 {{{\left( {\sqrt x - 2} \right)}^2}{\rm{d}}x} = {\rm{\pi }}\int\limits_4^9 {\left( {x - 4\sqrt x + 4} \right){\rm{d}}x} = \left. {{\rm{\pi }}\left( {\frac{{{x^2}}}{2} - \frac{8}{3}x\sqrt x + 4x} \right)} \right|_4^9 = \frac{{11\pi }}{6} \approx 5,8\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.