Tỉ lệ người dân đã tiêm vắc xin phòng bệnh A ở một địa phương là \(65\% \). Trong số những người đã tiêm phòng, tỉ lệ mắc bệnh A là 5% còn trong số những người chưa tiêm, tỉ lệ mắc bệnh A là 17%. Gặp ngẫu nhiên một người ở địa phương đó. Biết rằng người đó mắc bệnh A. Khi đó xác suất người đó không tiêm vắc xin phòng bệnh A có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\) là phân số tối giản). Giá trị \(b - a\) là bao nhiêu?
Tỉ lệ người dân đã tiêm vắc xin phòng bệnh A ở một địa phương là \(65\% \). Trong số những người đã tiêm phòng, tỉ lệ mắc bệnh A là 5% còn trong số những người chưa tiêm, tỉ lệ mắc bệnh A là 17%. Gặp ngẫu nhiên một người ở địa phương đó. Biết rằng người đó mắc bệnh A. Khi đó xác suất người đó không tiêm vắc xin phòng bệnh A có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\) là phân số tối giản). Giá trị \(b - a\) là bao nhiêu?
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 65
Gọi \(A\) là biến cố “Người đó tiêm vắc xin phòng bệnh A”.
\(B\) là biến cố “Người đó mắc bệnh A”.
Theo đề ta có \(P\left( A \right) = 0,65;P\left( {B|A} \right) = 0,05;P\left( {B|\overline A } \right) = 0,17\).
Xác suất để người đó mắc bệnh A là
\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,65.0,05 + 0,35.0,17 = \frac{{23}}{{250}} = 0,092\).
Do đó \(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}} = \frac{{0,35.0,17}}{{0,092}} = \frac{{119}}{{184}}\).
Suy ra \(a = 119;b = 184\). Do đó \(b - a = 65\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 43,3
Ta có \(\overrightarrow {AB} = \left( {18;25; - 5} \right)\).
Đường trượt của du khách là một đường thẳng đi qua điểm \(A\left( {3;2,5;15} \right)\) và nhận \(\overrightarrow {AB} = \left( {18;25; - 5} \right)\) làm vectơ chỉ phương có phương trình là:
\(\left\{ \begin{array}{l}x = 3 + 18t\\y = 2,5 + 25t\\z = 15 - 5t\end{array} \right.\).
Khi du khách ở độ cao 12 m tức là \(z = 12 \Leftrightarrow 15 - 5t = 12 \Leftrightarrow t = \frac{3}{5}\).
Với \(t = \frac{3}{5}\) thì \(\left\{ \begin{array}{l}x = 3 + 18.\frac{3}{5}\\y = 2,5 + 25.\frac{3}{5}\\z = 12\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{69}}{5}\\y = \frac{{35}}{2}\\z = 12\end{array} \right.\).
Suy ra \(M\left( {\frac{{69}}{5};\frac{{35}}{2};12} \right)\). Do đó \(T = \frac{{69}}{5} + \frac{{35}}{2} + 12 = 43,3\).
Câu 2
Lời giải
Đáp án đúng là: B
Phương trình của mặt phẳng \(\left( {Oyz} \right)\) là: \(x = 0\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
