Câu hỏi:

24/12/2025 5 Lưu

Trong không gian với hệ trục tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right)\) có phương trình \(x + 2y - z + 3 = 0\) và điểm \(A\left( {1;1;2} \right)\).

a) Tọa độ của một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\)\(\left( {1;2; - 1} \right)\).
Đúng
Sai
b) Điểm \(A\) thuộc mặt phẳng \(\left( P \right)\).
Đúng
Sai
c) Phương trình mặt cầu tâm \(A\) và có bán kính bằng khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right)\)\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 8\).
Đúng
Sai
d) Gọi \(\left( Q \right)\) là mặt phẳng đi qua điểm \(A\) và song song với mặt phẳng \(\left( P \right)\), mặt phẳng \(\left( Q \right)\) có phương trình là \(x + 2y - z - 1 = 0\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) S, c) S, d) Đ

a) Mặt phẳng \(\left( P \right):x + 2y - z + 3 = 0\) có một vectơ pháp tuyến là \(\overrightarrow n  = \left( {1;2; - 1} \right)\).

b) Thay tọa độ điểm \(A\left( {1;1;2} \right)\) vào phương trình mặt phẳng \(\left( P \right):x + 2y - z + 3 = 0\) ta được:

\(1 + 2.1 - 2 + 3 = 4 \ne 0\). Do đó điểm \(A \notin \left( P \right)\).

c) \(R = d\left( {A,\left( P \right)} \right) = \frac{{\left| {1 + 2.1 - 2 + 3} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{4}{{\sqrt 6 }}\).

Phương trình mặt cầu cần tìm là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = \frac{{16}}{6} = \frac{8}{3}\).

d) Vì \(\left( Q \right)//\left( P \right)\) nên \(\left( Q \right):x + 2y - z + D = 0\left( {D \ne 3} \right)\).

Vì \(A \in \left( Q \right)\) nên \(1 + 2.1 - 2 + D = 0 \Leftrightarrow D =  - 1\).

Vậy \(\left( Q \right):x + 2y - z - 1 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 6,5

\(F'\left( x \right) = {e^x}\left( {m\sin x + n\cos x} \right) + {e^x}\left( {m\cos x - n\sin x} \right)\)\( = {e^x}\left[ {\left( {m - n} \right)\sin x + \left( {n + m} \right)\cos x} \right]\).

\(F'\left( x \right) = f\left( x \right)\) nên ta có \(\left\{ \begin{array}{l}m - n = 2\\m + n = - 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = - \frac{1}{2}\\n = - \frac{5}{2}\end{array} \right.\).

Suy ra \(S = {m^2} + {n^2} = \frac{{13}}{2} = 6,5\).

Lời giải

Trả lời: 2026

Ta có \(I = \int\limits_0^1 {{e^{x + 1}}dx} \)\( = \int\limits_0^1 {{e^{x + 1}}d\left( {x + 1} \right)} = \left. {{e^{x + 1}}} \right|_0^1 = {e^2} - e\).

Suy ra \(a = 1;b = - 1\).

Do đó \(S = {\log _2}{2^{2026}} = 2026\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho \(\int\limits_1^2 {\left[ {4f\left( x \right) - 2x} \right]dx} = 1\). Khi đó \(\int\limits_1^2 {f\left( x \right)} dx\)bằng:    

A. \[1\].                    
B. \[ - 3\].                 
C. \[3\].                             
D. \[ - 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {{n_1}} = \left( {3\,;\,0\,;\, - 1} \right)\).                      
B. \(\overrightarrow {{n_2}} = \left( {3\,;\, - 1\,;\,2} \right)\).                              
C. \(\overrightarrow {{n_3}} = \left( { - 3\,;\,0\,;\, - 1} \right)\).                      
D. \(\overrightarrow {{n_4}} = \left( {3\,;\, - 1\,;\,0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP