PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Biết \(F\left( x \right) = {e^x}\left( {m\sin x + n\cos x} \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {e^x}\left( {2\sin x - 3\cos x} \right)\). Tính \(S = {m^2} + {n^2}\).
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Biết \(F\left( x \right) = {e^x}\left( {m\sin x + n\cos x} \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {e^x}\left( {2\sin x - 3\cos x} \right)\). Tính \(S = {m^2} + {n^2}\).
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 6,5
\(F'\left( x \right) = {e^x}\left( {m\sin x + n\cos x} \right) + {e^x}\left( {m\cos x - n\sin x} \right)\)\( = {e^x}\left[ {\left( {m - n} \right)\sin x + \left( {n + m} \right)\cos x} \right]\).
Vì \(F'\left( x \right) = f\left( x \right)\) nên ta có \(\left\{ \begin{array}{l}m - n = 2\\m + n = - 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = - \frac{1}{2}\\n = - \frac{5}{2}\end{array} \right.\).
Suy ra \(S = {m^2} + {n^2} = \frac{{13}}{2} = 6,5\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) S, b) Đ, c) Đ, d) S
a) Có \(F'\left( x \right) = f\left( x \right)\). Suy ra \(F'\left( 0 \right) = f\left( 0 \right) = {e^0} - 2.0 = 1\).
b) Có \(F\left( x \right) = \int {\left( {{e^x} - 2x} \right)dx} = {e^x} - {x^2} + C\).
Mà \(F\left( 0 \right) = 1\) nên \(F\left( 0 \right) = {e^0} - 0 + C = 1 \Rightarrow C = 0\).
Do đó \(F\left( x \right) = {e^x} - {x^2}\). Suy ra \(F\left( 1 \right) = {e^1} - {1^2} = e - 1\).
c) \(\int {F\left( x \right)} dx = \int {\left( {{e^x} - {x^2}} \right)dx} = {e^x} - \frac{{{x^3}}}{3} + C\).
d) \[\int {\frac{{f\left( x \right)}}{{x{e^x}}}dx = } \int {\frac{{{e^x} - 2x}}{{x{e^x}}}dx = } \int {\left( {\frac{1}{x} - 2{e^{ - x}}} \right)dx} = \ln \left| x \right| + 2{e^{ - x}} + C\].
Câu 2
Lời giải
a) Đ, b) S, c) S, d) Đ
a) Mặt phẳng \(\left( P \right):x + 2y - z + 3 = 0\) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {1;2; - 1} \right)\).
b) Thay tọa độ điểm \(A\left( {1;1;2} \right)\) vào phương trình mặt phẳng \(\left( P \right):x + 2y - z + 3 = 0\) ta được:
\(1 + 2.1 - 2 + 3 = 4 \ne 0\). Do đó điểm \(A \notin \left( P \right)\).
c) \(R = d\left( {A,\left( P \right)} \right) = \frac{{\left| {1 + 2.1 - 2 + 3} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{4}{{\sqrt 6 }}\).
Phương trình mặt cầu cần tìm là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = \frac{{16}}{6} = \frac{8}{3}\).
d) Vì \(\left( Q \right)//\left( P \right)\) nên \(\left( Q \right):x + 2y - z + D = 0\left( {D \ne 3} \right)\).
Vì \(A \in \left( Q \right)\) nên \(1 + 2.1 - 2 + D = 0 \Leftrightarrow D = - 1\).
Vậy \(\left( Q \right):x + 2y - z - 1 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\overrightarrow {{u_2}} = \left( { - 2;5;4} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
