Một kỹ sư xây dựng muốn thiết kế một cầu thang với tổng chiều cao từ mặt đất đến tầng trên là h = 3,6m . Chiều cao giữa các bậc thang không đồng đều mà giảm dần theo cấp số cộng để đảm bảo tính thẩm mỹ và thoải mái khi bước. Bậc đầu tiên cao 0,3 m. Công sai chiều cao giữa các bậc là d= -0,01m. Xác định số bậc thang cần thiết để tổng chiều cao đạt 3,6m? (nhập đáp án vào ô trống)
Đáp án: ___
Quảng cáo
Trả lời:
Đáp án đúng là "16"
Phương pháp giải
Sử dụng các công thức cấp số cộng
Lời giải
Tổng chiều cao của \(n\) bậc thang là:
\({S_n} = \frac{n}{2}\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)
Thay \({S_n} = 3,6;{u_1} = 0,3;d = - 0,01\) ta có:
\(3,6 = \frac{n}{2}\left( {2.0,3 + \left( {n - 1} \right)\left( { - 0,01} \right)} \right) = 0,01{n^2} - 0,61n + 7,2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{n = 16}\\{n = 45}\end{array}} \right.\)
Thử lại với các nghiệm n thu được ta thấy:
Với \(n = 16\) thì chiều cao bậc cuối cùng là \(h = 0,3 + \left( {16 - 1} \right)\left( { - 0,01} \right) = 0,15m\)
Với \(n = 45\) thì chiều cao bậc cuối cùng là \(h = 0,3 + \left( {45 - 1} \right)\left( { - 0,01} \right) = - 0,14\). Chiều cao âm như này không hợp lý nên giá trị \(n = 45\) không thỏa mãn yêu cầu bài toán.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là "1/4 | 0,25"
Phương pháp giải
Vận dụng công thức: \(E = \frac{F}{{|q|}}\)
Định luật Coulomb: \(F = k\frac{{\left| {{q_1}{q_2}} \right|}}{{\varepsilon {r^2}}}\)
Lời giải
Theo định luật Coulomb ta có: \(F = k\frac{{\left| {{q_1}{q_2}} \right|}}{{\varepsilon {r^2}}}\)
mặt khác: \(E = \frac{F}{{|q|}}\)
\( \Rightarrow E = k\frac{{|Q|}}{{\varepsilon .{r^2}}}\)
Giả sử môi ô vuông là 1 đơn vị đo.
Ta có:
\( \Rightarrow {E_1} = k\frac{{|Q|}}{{{\varepsilon _1}.r_1^2}}\)
\( \Rightarrow {E_2} = k\frac{{|Q|}}{{{\varepsilon _2}.r_2^2}}\)
Xét tại điểm \({E_1} = {E_2}\) ứng với \[{r_1} = {r_2}\]
\( \Rightarrow k\frac{{|Q|}}{{{\varepsilon _1}.r_1^2}} = k\frac{{|Q|}}{{{\varepsilon _2}.r_2^2}}\)
\( \Leftrightarrow \frac{1}{{{\varepsilon _1}r_1^2}} = \frac{1}{{{\varepsilon _2}r_2^2}} \Rightarrow \frac{{{\varepsilon _1}}}{{{\varepsilon _2}}} = \frac{{r_2^2}}{{r_1^2}} = 0,25\)
Lời giải
Đáp án đúng là "69/2"
Phương pháp giải
Lập hàm và dùng ứng dụng hàm số để giải bài toán
Lời giải
Gọi giá bán mới là \(x\) triệu đồng với \(x \in \left[ {30;35} \right]\)
Khi đó số xe bán ra là \(400 + \left( {35 - x} \right)100\).
Lợi nhuận thu được là:
\(f\left( x \right) = \left[ {400 + \left( {35 - x} \right)100} \right]\left( {x - 30} \right) = - 100{x^2} + 6900x - 117000 = - 100{\left( {x - \frac{{69}}{2}} \right)^2} + 2025 \le 2025\)
Dấu bằng xảy ra khi \(x = \frac{{69}}{2}\). Vậy giá bán mới \(\frac{{69}}{2}\) triệu đồng thì thu được lợi nhuận cao nhất.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



