Có 20 sinh viên thi Xác suất-Thống kê, trong đó có 4 sinh viên giỏi ( trả lời đúng \(100{\rm{\% }}\) các câu hỏi), 5 sinh viên khá (trả lời \(80{\rm{\% }}\) các câu hỏi), 3 sinh viên trung bình (trả lời được \(50{\rm{\% }}\) câu hỏi). Gọi ngẫu nhiên 1 sinh viên vào thi và phát đề có 4 câu hỏi (được lấy ngẫu nhiên từ 20 câu). Sinh viên được gọi trả lời được cả 4 câu. Tìm kết quả gần nhất.
Có 20 sinh viên thi Xác suất-Thống kê, trong đó có 4 sinh viên giỏi ( trả lời đúng \(100{\rm{\% }}\) các câu hỏi), 5 sinh viên khá (trả lời \(80{\rm{\% }}\) các câu hỏi), 3 sinh viên trung bình (trả lời được \(50{\rm{\% }}\) câu hỏi). Gọi ngẫu nhiên 1 sinh viên vào thi và phát đề có 4 câu hỏi (được lấy ngẫu nhiên từ 20 câu). Sinh viên được gọi trả lời được cả 4 câu. Tìm kết quả gần nhất.
Tính xác suất để sinh viên đó là sinh viên khá?
Quảng cáo
Trả lời:
Đáp án đúng là A
Phương pháp giải
Sử dụng công thức xác suất toàn phần, công thức Bayes
Lời giải
Gọi \({A_1},{A_2},{A_3}\) lần lượt là các biến cố gọi một sinh viên Giỏi, Khá, Trung Bình
Nên \({A_1},{A_2},{A_3}\) là hệ biến cố đầy đủ.
Gọi \(B\): "sinh viên đó trả lời được 4 câu hỏi"
Ta có: \(P\left( {{A_1}} \right) = \frac{{C_4^1}}{{C_{20}^1}} = \frac{1}{5},P\left( {{A_2}} \right) = \frac{5}{{20}} = \frac{1}{4},P\left( {{A_3}} \right) = \frac{3}{{20}}\)
Theo bài ta có: 4 sinh viên giỏi trả lời được \(100{\rm{\% }}\) các câu hỏi \( \Rightarrow \) trả lời 20 câu hỏi
5 sinh viên khá trả lời \(80{\rm{\% }}\) câu hỏi \( \Rightarrow \) trả lời được \(20.80{\rm{\% }} = 16\) câu hỏi
3 sinh viên trung bình \(50{\rm{\% }}\) câu hỏi \( \Rightarrow \) Trả lời \(20.50{\rm{\% }} = 10\) câu hỏi
Từ đó \(P\left( {B\mid {A_1}} \right) = \frac{{C_{20}^4}}{{C_{20}^4}} = 1;P\left( {B\mid {A_2}} \right) = \frac{{C_{16}^4}}{{C_{20}^4}} = \frac{{364}}{{969}};P\left( {B\mid {A_3}} \right) = \frac{{C_{10}^4}}{{C_{20}^4}} = \frac{{14}}{{323}}\)
Áp dụng công thức tính xác suất toàn phần:
\(P\left( B \right) = P\left( {B\mid {A_1}} \right).P\left( {{A_1}} \right) + P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right) + P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right) = 1.\frac{1}{5} + \frac{{364}}{{969}}.\frac{1}{4} + \frac{3}{{20}}.\frac{{14}}{{323}} = \frac{{2911}}{{9690}}\)
Xác suất để sinh viên đó là sinh viên khá là: \(P\left( {{A_2}\mid B} \right)\)
Áp dụng công thức Bayes \(P\left( {{A_2}\mid B} \right) = \frac{{P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right)}}{{P\left( B \right)}} = \frac{{\frac{{364}}{{969}}.\frac{1}{4}}}{{\frac{{2911}}{{9690}}}} = \frac{{910}}{{2911}} \approx 0,31\)
Câu hỏi cùng đoạn
Câu 2:
Tính xác suất để sinh viên đó là sinh viên giỏi?
Đáp án đúng là C
Phương pháp giải
Sử dụng công thức xác suất Bayes
Lời giải
Xác suất để sinh viên đó là sinh viên giỏi là: \(P\left( {{A_1}\mid B} \right)\)
Áp dụng công thức Bayes ta có:
\(P\left( {{A_1}\mid B} \right) = \frac{{P\left( {B\mid {A_1}} \right).P\left( {{A_1}} \right)}}{{P\left( B \right)}} = \frac{{1.\frac{1}{5}}}{{\frac{{2911}}{{9690}}}} = \frac{{1938}}{{2911}} \approx 0,67\)
Câu 3:
Xác suất để sinh viên đó là sinh viên trung bình bằng:
Đáp án đúng là B
Phương pháp giải
Sử dụng công thức xác suất Bayes
Lời giải
Xác suất để sinh viên đó là sinh viên trung bình là: \(P\left( {{A_3}\mid B} \right)\)
Áp dụng công thức Bayes ta có:
\(P\left( {{A_3}\mid B} \right) = \frac{{P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right)}}{{P\left( B \right)}} = \frac{{\frac{{14}}{{323}}.\frac{3}{{20}}}}{{\frac{{2911}}{{9690}}}} = \frac{{20349}}{{675325}} \approx 0,03\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là "1/4 | 0,25"
Phương pháp giải
Vận dụng công thức: \(E = \frac{F}{{|q|}}\)
Định luật Coulomb: \(F = k\frac{{\left| {{q_1}{q_2}} \right|}}{{\varepsilon {r^2}}}\)
Lời giải
Theo định luật Coulomb ta có: \(F = k\frac{{\left| {{q_1}{q_2}} \right|}}{{\varepsilon {r^2}}}\)
mặt khác: \(E = \frac{F}{{|q|}}\)
\( \Rightarrow E = k\frac{{|Q|}}{{\varepsilon .{r^2}}}\)
Giả sử môi ô vuông là 1 đơn vị đo.
Ta có:
\( \Rightarrow {E_1} = k\frac{{|Q|}}{{{\varepsilon _1}.r_1^2}}\)
\( \Rightarrow {E_2} = k\frac{{|Q|}}{{{\varepsilon _2}.r_2^2}}\)
Xét tại điểm \({E_1} = {E_2}\) ứng với \[{r_1} = {r_2}\]
\( \Rightarrow k\frac{{|Q|}}{{{\varepsilon _1}.r_1^2}} = k\frac{{|Q|}}{{{\varepsilon _2}.r_2^2}}\)
\( \Leftrightarrow \frac{1}{{{\varepsilon _1}r_1^2}} = \frac{1}{{{\varepsilon _2}r_2^2}} \Rightarrow \frac{{{\varepsilon _1}}}{{{\varepsilon _2}}} = \frac{{r_2^2}}{{r_1^2}} = 0,25\)
Lời giải
Đáp án đúng là "69/2"
Phương pháp giải
Lập hàm và dùng ứng dụng hàm số để giải bài toán
Lời giải
Gọi giá bán mới là \(x\) triệu đồng với \(x \in \left[ {30;35} \right]\)
Khi đó số xe bán ra là \(400 + \left( {35 - x} \right)100\).
Lợi nhuận thu được là:
\(f\left( x \right) = \left[ {400 + \left( {35 - x} \right)100} \right]\left( {x - 30} \right) = - 100{x^2} + 6900x - 117000 = - 100{\left( {x - \frac{{69}}{2}} \right)^2} + 2025 \le 2025\)
Dấu bằng xảy ra khi \(x = \frac{{69}}{2}\). Vậy giá bán mới \(\frac{{69}}{2}\) triệu đồng thì thu được lợi nhuận cao nhất.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



