Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\left[ { - 2;3} \right]\) và \(f'\left( x \right)\) có đồ thị như hình vẽ sau:

Biết \(\int\limits_{ - 2}^1 {f'\left( x \right)dx} = 3\) và diện tích phần gạch sọc trong hình vẽ \(S = \frac{5}{3}\). Giá trị \(f\left( 3 \right) - f\left( { - 2} \right)\) bằng bao nhiêu? (kết quả làm tròn đến hàng phần mười).
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\left[ { - 2;3} \right]\) và \(f'\left( x \right)\) có đồ thị như hình vẽ sau:

Biết \(\int\limits_{ - 2}^1 {f'\left( x \right)dx} = 3\) và diện tích phần gạch sọc trong hình vẽ \(S = \frac{5}{3}\). Giá trị \(f\left( 3 \right) - f\left( { - 2} \right)\) bằng bao nhiêu? (kết quả làm tròn đến hàng phần mười).
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 1,3
Ta có \(\int\limits_{ - 2}^3 {f'\left( x \right)dx} = \int\limits_{ - 2}^1 {f'\left( x \right)dx} + \int\limits_1^3 {f'\left( x \right)dx} = 3 - \int\limits_1^3 {\left| {f'\left( x \right)} \right|dx} \)\( = 3 - \frac{5}{3} = \frac{4}{3}\).
Mà \(\int\limits_{ - 2}^3 {f'\left( x \right)dx} = \left. {f\left( x \right)} \right|_{ - 2}^3 = f\left( 3 \right) - f\left( { - 2} \right)\).
Do đó \(f\left( 3 \right) - f\left( { - 2} \right) \approx 1,3\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Ta có \(V = \pi \int\limits_0^\pi {{{\sin }^2}xdx} = \left. {\pi \left( {\frac{x}{2} - \frac{{\sin 2x}}{4}} \right)} \right|_0^\pi = \pi .\frac{\pi }{2} = \frac{{{\pi ^2}}}{2}\).
Câu 2
Lời giải
a) S, b) S, c) S, d) S
a) Một vectơ chỉ phương của \(\Delta \) là \(\overrightarrow u = \left( {2;1; - 3} \right)\).
b) \(\overrightarrow u = \left( {2;1; - 3} \right)\) là vectơ chỉ phương của \(\Delta \), \(\overrightarrow n = \left( {2;1; - 3} \right)\) là vectơ pháp tuyến của mặt phẳng \(\left( P \right)\).
Ta có \(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {2.2 + 1.1 + \left( { - 3} \right)\left( { - 3} \right)} \right|}}{{14}} = 1\). Suy ra \(\left( {\Delta ,\left( P \right)} \right) = 90^\circ \).
c) Vì \(\Delta \bot \left( P \right)\) nên \(\Delta \) và \(\left( P \right)\) có một điểm chung.
d) Ta có \(M \in \Delta \).
Tọa độ điểm \(N\) là nghiệm của hệ
\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{1}{7}\\y = \frac{{11}}{7}\\z = \frac{2}{7}\\t = - \frac{3}{7}\end{array} \right.\). Suy ra \(N\left( {\frac{1}{7};\frac{{11}}{7};\frac{2}{7}} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.