Câu hỏi:

24/12/2025 9 Lưu

Khi gắn hệ tọa độ \(Oxyz\) (đơn vị trên mỗi trục tính theo kilômét) vào một sân bay, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt sân bay. Một máy bay bay theo đường thẳng từ vị trí \(A\left( {5;\,0;\,5} \right)\) đến vị trí \(B\left( {10;\,10;\,3} \right)\) và hạ cánh tại vị trí \(M\left( {a;\,b;\,0} \right)\). Giá trị của \(a + b\) bằng bao nhiêu (viết kết quả dưới dạng số thập phân)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

42,5

Trả lời: 42,5

Phương trình đường thẳng \(AB\) là:\(\frac{{x - 5}}{5} = \frac{y}{{10}} = \frac{{z - 5}}{{ - 2}}\).

Vì \(M\)thuộc \(AB\) nên tồn tại số thực \(t\) sao cho\[M(5t + 5;\,10t;\, - 2t + 5)\].

Ngoài ra, \(M\)thuộc mặt phẳng \(\left( {Oxy} \right)\) nên \( - 2t + 5 = 0 \Leftrightarrow t = \frac{5}{2}\). Suy ra \(M(17,5;\,25;\,0)\).

Vậy\(a + b = 17,5 + 25 = 42,5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 4

Ta có \(F\left( x \right) = \int {\left( {3{x^2} + \frac{1}{{2x + 1}}} \right)} dx = {x^3} + \frac{1}{2}\ln \left| {2x + 1} \right| + C\).

\(F\left( 0 \right) = 0\) nên \(C = 0\).

Do đó \(F\left( x \right) = {x^3} + \frac{1}{2}\ln \left| {2x + 1} \right|\). Suy ra \(F\left( 1 \right) = {1^3} + \frac{1}{2}\ln \left| {2.1 + 1} \right| = 1 + \frac{1}{2}\ln 3\).

Do đó \(a + b + c = 1 + 1 + 2 = 4\).