(1,0 điểm) Cho hình chóp tứ giác đều \(ABCD\) có cạnh đáy bằng \(a\), \(O\) là tâm của đáy và \(SO = a.\)
a) Xác định hình chiếu vuông góc của \(\Delta SBC\) trên mặt phẳng \(\left( {ABCD} \right)\).
b) Tính côsin góc giữa \(SA\) và mặt phẳng \(\left( {SDC} \right)\).
(1,0 điểm) Cho hình chóp tứ giác đều \(ABCD\) có cạnh đáy bằng \(a\), \(O\) là tâm của đáy và \(SO = a.\)
a) Xác định hình chiếu vuông góc của \(\Delta SBC\) trên mặt phẳng \(\left( {ABCD} \right)\).
b) Tính côsin góc giữa \(SA\) và mặt phẳng \(\left( {SDC} \right)\).
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:

a) Ta có \(ABCD\) là hình chóp tứ giác đều, \(O\) là tâm của đáy \( \Rightarrow SO \bot \left( {ABCD} \right)\).
Từ đó suy ra hình chiếu vuông góc của \(\Delta SBC\) trên mặt phẳng \(\left( {ABCD} \right)\) là \(\Delta OBC\).
b) Gọi \(\alpha \) là góc giữa \(SA\) và mặt phẳng \(\left( {SDC} \right)\).
Ta có \(\sin \alpha = \frac{{d\left( {A,\left( {SDC} \right)} \right)}}{{SA}} = \frac{{2d\left( {O,\left( {SDC} \right)} \right)}}{{SA}}\).
Dựng \(OI \bot CD\) tại \(I\), \(OK \bot SI\) tại \(K\) \( \Rightarrow OK = d\left( {O,\left( {SDC} \right)} \right)\).
Do \(ABCD\) là hình vuông nên \(I\) là trung điểm của \(CD \Rightarrow OI = \frac{a}{2}\).
Ta có: \(\frac{1}{{O{K^2}}} = \frac{1}{{O{I^2}}} + \frac{1}{{O{S^2}}} = \frac{5}{{{a^2}}} \Rightarrow OK = \frac{{a\sqrt 5 }}{5}\).
\(SA = \sqrt {S{O^2} + O{A^2}} = \frac{{a\sqrt 6 }}{2}\) \( \Rightarrow \sin \alpha = \frac{4}{{\sqrt {30} }} \Rightarrow \cos \alpha = \sqrt {\frac{7}{{15}}} \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Vì \({\log _2}x = \sqrt 2 \) nên \(x > 0\).
Khi đó ta có \(A = {\log _2}{x^2} + {\log _{\frac{1}{2}}}{x^3} + {\log _4}x\)\( = 2{\log _2}x + 3{\log _{{2^{ - 1}}}}x + {\log _{{2^2}}}x\)
\( = 2{\log _2}x - 3{\log _2}x + \frac{1}{2}{\log _2}x = - \frac{1}{2}{\log _2}x = - \frac{{\sqrt 2 }}{2}\).
Lời giải

Gọi \(O\) là tâm của hình chữ nhật \(ABCD\).
Ta có \(AC \cap \left( {SBD} \right) = O\) nên \(\frac{{d\left( {C,\left( {SBD} \right)} \right)}}{{d\left( {A,\left( {SBD} \right)} \right)}} = \frac{{CO}}{{AO}} = 1\) (vì \(O\) là trung điểm \(AC\)).
Suy ra \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right)\).
Gọi \(H\), \(I\) lần lượt là hình chiếu của \(A\) lên \(BD\), \(SH\), ta có
\(\left\{ \begin{array}{l}AI \bot SH\\AI \bot BD\,\,\,\,\left( {{\rm{do }}BD \bot AH,\,BD \bot SA \Rightarrow BD \bot \left( {SAH} \right) \Rightarrow BD \bot AI} \right)\end{array} \right.\)
Suy ra \(AI \bot \left( {SBD} \right)\) (vì \(SH \cap BD = H\) và \(SH,BD \subset \left( {SBD} \right)\)).
Do đó, \(d\left( {A,\left( {SBD} \right)} \right) = AI\).
Xét tam giác \(ABD\) vuông tại \(A\) với \(AH\) là đường cao, ta có
\(AH = \frac{{AB \cdot AD}}{{\sqrt {A{B^2} + A{D^2}} }} = \frac{{a \cdot a\sqrt 3 }}{{\sqrt {3{a^2} + {a^2}} }} = \frac{{a\sqrt 3 }}{2}\).
Xét tam giác \(SAH\) vuông tại \(A\) với \(AI\) là đường cao, ta có
\(AI = \frac{{AH \cdot AS}}{{\sqrt {A{H^2} + A{S^2}} }} = \frac{{\frac{{a\sqrt 3 }}{2} \cdot a\sqrt 3 }}{{\sqrt {\frac{{3{a^2}}}{4} + 3{a^2}} }} = \frac{{a\sqrt {15} }}{5}\).
Vậy khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {SBD} \right)\) bằng \(\frac{{a\sqrt {15} }}{5}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

