(1 điểm) Giả sử sự tăng trưởng của một loại vi khuẩn trong quá trình nuôi cấy tuân theo công thức \(N\left( t \right) = {N_0} \cdot {e^{rt}}\), trong đó \({N_0}\) là số lượng vi khuẩn ban đầu, \(r\) là tỉ lệ tăng trưởng \(\left( {r > 0} \right)\), \(t\) là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu là 500 con và sau 2 giờ có 1 500 con. Hỏi sau bao lâu thì số lượng vi khuẩn ban đầu sẽ tăng lên gấp đôi?
(1 điểm) Giả sử sự tăng trưởng của một loại vi khuẩn trong quá trình nuôi cấy tuân theo công thức \(N\left( t \right) = {N_0} \cdot {e^{rt}}\), trong đó \({N_0}\) là số lượng vi khuẩn ban đầu, \(r\) là tỉ lệ tăng trưởng \(\left( {r > 0} \right)\), \(t\) là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu là 500 con và sau 2 giờ có 1 500 con. Hỏi sau bao lâu thì số lượng vi khuẩn ban đầu sẽ tăng lên gấp đôi?
Quảng cáo
Trả lời:
Số lượng vi khuẩn ban đầu \({N_0} = 500\) con.
Sau thời gian \(t = 2\) giờ có 1 500 con nên ta có \(1\,\,500 = 500 \cdot {e^{2r}}\)
\( \Leftrightarrow {e^{2r}} = 3 \Leftrightarrow 2r = \ln 3 \Leftrightarrow r = \frac{{\ln 3}}{2}\).
Do đó, tỉ lệ tăng trưởng mỗi giờ của loài vi khuẩn này là \(r = \frac{{\ln 3}}{2}\).
Gọi \(t\) là thời gian để số lượng vi khuẩn ban đầu tăng gấp đôi, tức là \(N\left( t \right) = 2{N_0}\).
Lại có \(N\left( t \right) = {N_0} \cdot {e^{rt}}\) nên ta có \(2{N_0} = {N_0} \cdot {e^{rt}} \Leftrightarrow {e^{rt}} = 2 \Rightarrow rt = \ln 2 \Rightarrow t \approx 1,26\) (giờ).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Ta có \({5^{2x - 4}} = 25 \Leftrightarrow {5^{2x - 4}} = {5^2} \Leftrightarrow 2x - 4 = 2 \Leftrightarrow x = 3\).
Lời giải

a) Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot BC\).
Lại có \(BC \bot AB\) (do tam giác \(ABC\) vuông tại \(B\)).
Từ đó suy ra \(BC \bot \left( {SAB} \right)\).
b) Vì \(BC \bot \left( {SAB} \right)\) và \(AH\) nằm trong \(\left( {SAB} \right)\) nên \(BC \bot AH\).
Ta lại có \(AH \bot SB\) (do \(AH\) là đường cao của tam giác \(SAB\))
Khi đó, \(AH \bot \left( {SBC} \right)\). Từ đó suy ra \(AH \bot SC\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.