PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Một mặt bằng đường đua được mô hình hoá bởi một hình bao gồm hai cạnh của một hình chữ nhật và hai nửa đường tròn bằng nhau. Một khán giả đang ngồi xem đua tại vị trí điểm \[P\](với các thông số được cho như hình vẽ). Gọi \[Q\] là điểm trên đường đua sao cho khoảng cách từ \[P\] đến \[Q\] là ngắn nhất. Khoảng cách ngắn nhất đó bằng bao nhiêu kilomet?
. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/21-1766969228.png)
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Một mặt bằng đường đua được mô hình hoá bởi một hình bao gồm hai cạnh của một hình chữ nhật và hai nửa đường tròn bằng nhau. Một khán giả đang ngồi xem đua tại vị trí điểm \[P\](với các thông số được cho như hình vẽ). Gọi \[Q\] là điểm trên đường đua sao cho khoảng cách từ \[P\] đến \[Q\] là ngắn nhất. Khoảng cách ngắn nhất đó bằng bao nhiêu kilomet?
. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/21-1766969228.png)
Quảng cáo
Trả lời:
Đáp án:
Đáp án: \[1,5\].
. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/12/22-1766969244.png)
Gọi \[O\] là tâm đường tròn \[(R = 1)\]; \[K\] là điểm giữa đường tròn và đường thẳng; \[H\] là hình chiếu của \[P\] lên \[OK\]. Có \[PH = 2\;km\]; \[OH = OK + KH = 1 + 0,5 = 1,5\;km\]; \[OP = \sqrt {{2^2} + 1,{5^2}} = 2,5\;km\].
Dễ thấy vị trí \[Q\] để cho \[PQ\] ngắn nhất là \[P,Q,O\] thẳng hàng.
Khi đó \[\min PQ = OP - R = 2,5 - 1 = 1,5\;km\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(3969\).
Xếp 10 người thành một hàng ngang ta có \(10!\) cách xếp.
Khi xếp 10 người thành 1 hàng, giữa 10 người có 9 vách ngăn. Để chia 10 người thành 4 nhóm ta cần chọn 3 vách ngăn trong 9 vách ngăn là \(C_9^3\).
Xếp 4 nhóm vừa chia vào 4 ga ta có \(4!\) cách xếp.
Vậy số cách 10 hành khách đang đứng đợi ở sân ga lên tàu QH15 là: \(T = 10!.C_9^3.4!\).
Vậy \(\frac{T}{{76800}} = \frac{{10!.C_9^3.4!}}{{76800}} = 3969\).
Lời giải
Đáp án: 34.
Gọi các biến cố \(A:\) “Học sinh giỏi Toán”; \(B:\) “Học sinh giỏi Văn”;
\(C:\) “\[2\] học sinh được chọn có đúng \[1\] học sinh giỏi cả Toán và Ngữ văn”.
Đặt \[x = n(AB)(x \in {\mathbb{N}^*})\] là số học sinh giỏi cả hai môn.
Số học sinh giỏi của lớp là \({n_G} = n(A) + n(B) - n(AB) = 18 + 12 - x = 30 - x.\)
\(\begin{array}{l}P(C) = \frac{{x.(30 - 2x)}}{{C_{30 - x}^2}} = \frac{{2x(30 - 2x)}}{{(30 - x)(29 - x)}}\\P(C) = \frac{9}{{23}} \Leftrightarrow 101{x^2} - 1911x + 7830 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 6 & \in \mathbb{N}\\x = \frac{{1305}}{{101}} \notin \mathbb{N}\end{array} \right. \Rightarrow x = 6.\end{array}\)
Vậy số học sinh của lớp 11 này bằng \(30 - 6 + 10 = 34\) học sinh.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

