PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu thí sinh chỉ chọn một phương án
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ dưới đây

Hàm số đã cho nghịch biến trên khoảng
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu thí sinh chỉ chọn một phương án
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ dưới đây

Quảng cáo
Trả lời:
Lời giải
Chọn B
Từ bảng biến thiên ta có hàm số đã cho nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đáp án: 0,75

Ta có \(0 < x < 0,9\). Gọi \(h\) là chiều cao của hình thang cân ta có \(h = \sqrt {0,{3^2} - {{\left( {\frac{x}{2} - \frac{{0,3}}{2}} \right)}^2}} = \frac{{\sqrt { - 100{x^2} + 60x + 27} }}{{20}}\)
Diện tích đáy là
\[S\left( x \right) = \frac{1}{2}\left( {0,3 + x} \right)\frac{{\sqrt { - 100{x^2} + 60x + 27} }}{{20}} = \frac{1}{{400}}\left( {3 + 10x} \right)\sqrt { - 100{x^2} + 60x + 27} \].
\[\begin{array}{l}S'\left( x \right) = \frac{1}{{400}}\left[ {10\sqrt { - 100{x^2} + 60x + 27} + \left( {3 + 10x} \right)\frac{{ - 200x + 60}}{{2\sqrt { - 100{x^2} + 60x + 27} }}} \right]\\ = \frac{1}{{40}}\left[ {\frac{{ - 100{x^2} + 60x + 27 + \left( {3 + 10x} \right)\left( { - 10x + 3} \right)}}{{\sqrt { - 100{x^2} + 60x + 27} }}} \right] = \frac{{ - 200{x^2} + 60x + 36}}{{40\sqrt { - 100{x^2} + 60x + 27} }}\\S'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 0,15\\x = 0,75\end{array} \right.\end{array}\]

Do chiều cao của máng là 3 m không đổi suy ra thể tích máng lớn nhất khi diện tích đáy lớn nhất.
Vậy \(x = 0,75\left( m \right)\) thì thể tích máng xối lớn nhất.
Lời giải
Lời giải
Đáp án: 15.
Ta có \(\overrightarrow {AB} \) cùng phương với \(\overrightarrow u \left( {2; - 2;1} \right)\)nên \(\frac{{540}}{2} = \frac{{{y_B} - 3}}{{ - 2}} = \frac{{{z_B}}}{1} \Leftrightarrow \left\{ \begin{array}{l}{y_B} = - 537\\{z_B} = 270\end{array} \right.\)\( \Rightarrow B\left( {550; - 537;270} \right)\)
Quãng đường \(AB = 810m\) thì cabin di chuyển hết 3 phút. Vậy để cabin di chuyển hết quãng đường \(AD = 4050m\) thì mất \(\frac{{4050}}{{810}}.3 = 15\) phút.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

