Mảnh đất vườn của nhà anh Điệp có một phần ranh giới cũng là một phần đường cong (C):\(y = \frac{{x + a}}{{x + b}}\) bao quanh nó là sông nước. Với hệ trục tọa độ Oxy thích hợp, đơn vị trên mỗi trục là 10 mét thì đường cong (C) đi qua điểm \(\left( {2\,;\,\,3} \right)\) và có đường tiệm cận đứng \(x = 1\). Hàng ngày anh Điệp phải dùng thuyền máy để vận chuyển trái cây từ khu vườn của mình đến hai tuyến đường \({\Delta _1}:2x + y - 4 = 0\) và \({\Delta _2}:x + 2y - 2 = 0\) cho những người lái buôn từ nơi khác đến. Anh Điệp cần xác định một vị trí \(M\left( {{x_0}\,;\,\,{y_0}} \right)\) thuộc khu vườn của mình để tổng các khoảng cách từ vị trí M đó đến hai tuyến đường \({\Delta _1},\,\,{\Delta _2}\) là bé nhất. Hỏi khoảng cách từ vị trí được chọn làm gốc tọa độ đến điểm M là bao nhiêu mét (làm tròn đến hàng phần chục)?

Mảnh đất vườn của nhà anh Điệp có một phần ranh giới cũng là một phần đường cong (C):\(y = \frac{{x + a}}{{x + b}}\) bao quanh nó là sông nước. Với hệ trục tọa độ Oxy thích hợp, đơn vị trên mỗi trục là 10 mét thì đường cong (C) đi qua điểm \(\left( {2\,;\,\,3} \right)\) và có đường tiệm cận đứng \(x = 1\). Hàng ngày anh Điệp phải dùng thuyền máy để vận chuyển trái cây từ khu vườn của mình đến hai tuyến đường \({\Delta _1}:2x + y - 4 = 0\) và \({\Delta _2}:x + 2y - 2 = 0\) cho những người lái buôn từ nơi khác đến. Anh Điệp cần xác định một vị trí \(M\left( {{x_0}\,;\,\,{y_0}} \right)\) thuộc khu vườn của mình để tổng các khoảng cách từ vị trí M đó đến hai tuyến đường \({\Delta _1},\,\,{\Delta _2}\) là bé nhất. Hỏi khoảng cách từ vị trí được chọn làm gốc tọa độ đến điểm M là bao nhiêu mét (làm tròn đến hàng phần chục)?

Quảng cáo
Trả lời:
Đáp án:
Đáp án: 34,1
Đồ thị hàm số có tiệm cận đứng \(x = - b = 1 \Rightarrow b = - 1\).
Khi đó đồ thị hàm số \(y = \frac{{x + a}}{{x - 1}}\) qua \(\left( {2\,;\,\,3} \right) \Rightarrow 3 = \frac{{2 + a}}{{2 - 1}} \Rightarrow a = 1\); hàm số là (C).
Ta nhận thấy để khoảng cách từ điểm m thuộc khu vườn đến hai đường thẳng là nhỏ nhất thì điểm M phải thuộc đồ thị hàm số.
Gọi \(M\left( {{x_0}\,;\,\,\frac{{{x_0} + 1}}{{{x_0} - 1}}} \right) \in \left( C \right),\,\,{x_0} > 1\). Tổng khoảng cách từ M đến hai đường thẳng \({\Delta _1},\,\,{\Delta _2}\) là
\(d = d\left( {M\,,\,\,{\Delta _1}} \right) + d\left( {M\,,\,\,{\Delta _2}} \right) = \frac{{\left| {2{x_0} + \frac{{{x_0} + 1}}{{{x_0} - 1}} - 4} \right|}}{{\sqrt 5 }} + \frac{{\left| {{x_0} + 2 \cdot \frac{{{x_0} + 1}}{{{x_0} - 1}} - 2} \right|}}{{\sqrt 5 }}\) ;
\(\sqrt 5 d = \left| {\frac{{2x_0^2 - 5{x_0} + 5}}{{{x_0} - 1}}} \right| + \left| {\frac{{x_0^2 - {x_0} + 4}}{{{x_0} - 1}}} \right| = \frac{{2x_0^2 - 5{x_0} + 5}}{{{x_0} - 1}} + \frac{{x_0^2 - {x_0} + 4}}{{{x_0} - 1}}\)
(vì \(\left\{ \begin{array}{l}2x_0^2 - 5{x_0} + 5 > 0\\{x_0} - 1 > 0\\x_0^2 - {x_0} + 4 > 0\end{array} \right.\,,\,\,\forall {x_0} > 1\)).
Đặt \(\sqrt 5 d = \frac{{3x_0^2 - 6{x_0} + 9}}{{{x_0} - 1}} = g\left( x \right)\) với \(x > 1\).
Ta có: \(g'\left( x \right) = \frac{{3x_0^2 - 6{x_0} - 3}}{{{{\left( {{x_0} - 1} \right)}^2}}}\); \(g'\left( x \right) = 0 \Rightarrow 3x_0^2 - 6{x_0} - 3 = 0 \Rightarrow {x_0} = 1 + \sqrt 2 > 1\).
Ta có: .
Dấu đẳng thức xảy ra khi \({x_0} = 1 + \sqrt 2 \)\( \Rightarrow M\left( {1 + \sqrt 2 \,;\,\,1 + \sqrt 2 } \right)\).
Khoảng cách OM trên thực tế là mét.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Sai; b) Sai; c) Sai; d) Đúng

Bảng biến thiên

Vậy số sản phẩm khi chi phí đạt giá trị nhỏ nhất là \(\frac{{\sqrt {39} - 2}}{2}.100 \approx 212\) sản phẩm.
Câu 2
Lời giải
Chọn D
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\left[ {11;{\rm{ }}13} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Chọn D Dựa vào bảng biến thiên ta thấy: Hàm số đã cho đồng biến trên các khoảng \[\left( { - \infty \,;\, - 1} \right)\] và \(\left( {0\,;\,1} \right)\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/6-1766998416.png)


