Quảng cáo
Trả lời:
Phương pháp giải
Xác suất cổ điển
Lời giải

Đa giác \(ABCD\) giới hạn bởi miền \(D\left\{ {\begin{array}{*{20}{l}}{y \ge 0}\\{y \le 4}\\{x - y + 3 \ge 0}\\{x - y - 1 \le 0}\end{array}} \right.\)
Với mỗi \(x \in \mathbb{Z}\) ta chọn số nguyên \(y \in \mathbb{Z}\) nằm trong miền đa giác \(ABCD\).
Số phần tử của không gian mẫu \(n\left( {\rm{\Omega }} \right) = 1 + 2 + 3 + 4 + 5 + 4 + 3 + 2 + 1 = 25\)
Gọi \(H\) biến cố "chọn điểm \(M\) có tọa độ nguyên nằm trong hoặc trên miền tứ giác mà có tọa độ nguyên thỏa mãn
\(n\left( H \right) = 1 + 5 + 4 + 3 + 2 + 1 = 16\).
Vậy \(P\left( H \right) = \frac{{16}}{{25}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Phương pháp giải
Giải bất phương trình logarit.
Lời giải
\({\rm{lo}}{{\rm{g}}_3}\left( {x + {y^2} + 3y} \right) + 2{\rm{lo}}{{\rm{g}}_2}\left( {x + {y^2}} \right) \le {\rm{lo}}{{\rm{g}}_3}y + 2{\rm{lo}}{{\rm{g}}_2}\left( {x + {y^2} + 6y} \right)\)
\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {x + {y^2} + 3y} \right) - {\rm{lo}}{{\rm{g}}_3}y \le 2{\rm{lo}}{{\rm{g}}_2}\left( {x + {y^2} + 6y} \right) - 2{\rm{lo}}{{\rm{g}}_2}\left( {x + {y^2}} \right)\)
\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {\frac{{x + {y^2}}}{y} + 3} \right) \le 2{\rm{lo}}{{\rm{g}}_2}\left( {1 + \frac{{6y}}{{x + {y^2}}}} \right) \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {\frac{{x + {y^2}}}{y} + 3} \right) - 2{\rm{lo}}{{\rm{g}}_2}\left( {1 + \frac{{6y}}{{x + {y^2}}}} \right) \le 0\)
Ta đặt \(t = \frac{{x + {y^2}}}{y},t > 0\)
Khi đó bất phương trình trờ thành \({\rm{lo}}{{\rm{g}}_3}\left( {3 + t} \right) - 2{\rm{lo}}{{\rm{g}}_2}\left( {1 + \frac{6}{t}} \right) \le 0\) (1)
Xét hàm số \(f\left( t \right) = {\rm{lo}}{{\rm{g}}_3}\left( {3 + t} \right) - 2{\rm{lo}}{{\rm{g}}_2}\left( {1 + \frac{6}{t}} \right)\).
Suy ra \(f'\left( t \right) = \frac{1}{{\left( {3 + t} \right){\rm{ln}}3}} + \frac{{12}}{{\left( {{t^2} + 6t} \right){\rm{ln}}2}} > 0,\forall t > 0\). Vậy hàm số đồng biến trên khoảng \(\left( {0; + \infty } \right)\)
Ta có: \(f\left( 6 \right) = {\rm{lo}}{{\rm{g}}_3}9 - 2{\rm{lo}}{{\rm{g}}_2}2 = 0\). Suy ra
\(f\left( t \right) \le f\left( 6 \right) \Leftrightarrow t \le 6 \Leftrightarrow \frac{{x + {y^2}}}{y} \le 6 \Leftrightarrow x + {(y - 3)^2} \le 9\)
Ta đếm các cặp giá trị nguyên dương của \(\left( {x;y} \right)\)
Ta có \({(y - 3)^2} < 9 \Leftrightarrow 0 < y < 6 \Rightarrow y \in \left\{ {1;2;3;4;5} \right\}\)
Với \(y = 1;y = 5 \Rightarrow x \le 5 \Rightarrow x \in \left\{ {1;2;3;4;5} \right\}\) suy ra có 10 cặp thỏa mãn.
Với \(y = 2;y = 4 \Rightarrow x \le 8 \Rightarrow x \in \left\{ {1;2;3;4;5;6;7;8} \right\}\) suy ra có 16 cặp thỏa mãn.
Với \(y = 3 \Rightarrow x \le 9 \Rightarrow x \in \left\{ {1;2;3;4;5;6;7;8;9} \right\}\) suy ra có 9 cặp thỏa mãn.
Vậy có tất cả 35 cặp giá trị nguyên dương thỏa mãn.
Câu 2
Lời giải
Đáp án đúng là D
Phương pháp giải
Đọc lý thuyết đọc lý thuyết về ứng dụng di truyền - kĩ thuật chuyển gene.
Lời giải
Trình tự các bước tạo DNA tái tổ hợp là: Tách DNA → cắt và nối tạo DNA tái tổ hợp → đưa DNA tái tổ hợp vào tế bào nhận.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. This did not happen by chance
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
