Câu hỏi:

30/12/2025 34 Lưu

Trong không gian tọa độ \(Oxyz\), cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = 3 + t}\\{y = 2t}\\{x = 1 + 2t}\end{array}} \right.\). Xét mặt phẳng \(\left( P \right)\) thay đổi và luôn chứa đường thẳng \(d\). Gọi \(H\) là hình chiếu của điểm \(A\left( {6;1;3} \right)\) lên mặt phẳng \(\left( P \right)\). Khi \(\left( P \right)\) thay đổi thì \(H\) luôn thuộc một đường tròn cố định. Bán kính của đường tròn đó bằng

A. \(\sqrt 3 \).
B. \(\frac{{\sqrt 3 }}{2}\).      
C. \(\sqrt 5 \).
D. \(\frac{{\sqrt 5 }}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là D

Phương pháp giải

Tam giác vuông có cạnh huyền là đường kính.

Lời giải

Gọi \(I\) là hình chiếu của \(A\) lên đường thẳng \(d\)

\(d\) có véctơ chỉ phương \(\vec u = \left( {1;2;2} \right)\)

\(I \in d \Rightarrow I\left( {3 + t;2t;1 + 2t} \right) \Rightarrow \overrightarrow {AI} = \left( {t - 3;2t - 1;2t - 2} \right)\)

\(AI \bot d \Rightarrow AI.\vec u = 0 \Rightarrow 1\left( {t - 3} \right) + 2\left( {2t - 1} \right) + 2\left( {2t - 2} \right) = 0 \Rightarrow t = 1\)

\( \Rightarrow \overrightarrow {AI} = \left( { - 2;1;0} \right) \Rightarrow AI = \sqrt 5 \).

Ta có \(\left( {AHI} \right) \bot d \Rightarrow \widehat {AHI} = {90^ \circ } \Rightarrow H\) thuộc đường tròn có đường kính \(AI\)

Vậy bán kính đường tròn là \(\frac{{AI}}{2} = \frac{{\sqrt 5 }}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là A

Phương pháp giải

Giải bất phương trình logarit.

Lời giải

\({\rm{lo}}{{\rm{g}}_3}\left( {x + {y^2} + 3y} \right) + 2{\rm{lo}}{{\rm{g}}_2}\left( {x + {y^2}} \right) \le {\rm{lo}}{{\rm{g}}_3}y + 2{\rm{lo}}{{\rm{g}}_2}\left( {x + {y^2} + 6y} \right)\)

\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {x + {y^2} + 3y} \right) - {\rm{lo}}{{\rm{g}}_3}y \le 2{\rm{lo}}{{\rm{g}}_2}\left( {x + {y^2} + 6y} \right) - 2{\rm{lo}}{{\rm{g}}_2}\left( {x + {y^2}} \right)\)

\( \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {\frac{{x + {y^2}}}{y} + 3} \right) \le 2{\rm{lo}}{{\rm{g}}_2}\left( {1 + \frac{{6y}}{{x + {y^2}}}} \right) \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {\frac{{x + {y^2}}}{y} + 3} \right) - 2{\rm{lo}}{{\rm{g}}_2}\left( {1 + \frac{{6y}}{{x + {y^2}}}} \right) \le 0\)

Ta đặt \(t = \frac{{x + {y^2}}}{y},t > 0\)

Khi đó bất phương trình trờ thành \({\rm{lo}}{{\rm{g}}_3}\left( {3 + t} \right) - 2{\rm{lo}}{{\rm{g}}_2}\left( {1 + \frac{6}{t}} \right) \le 0\) (1)

Xét hàm số \(f\left( t \right) = {\rm{lo}}{{\rm{g}}_3}\left( {3 + t} \right) - 2{\rm{lo}}{{\rm{g}}_2}\left( {1 + \frac{6}{t}} \right)\).

Suy ra \(f'\left( t \right) = \frac{1}{{\left( {3 + t} \right){\rm{ln}}3}} + \frac{{12}}{{\left( {{t^2} + 6t} \right){\rm{ln}}2}} > 0,\forall t > 0\). Vậy hàm số đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

Ta có: \(f\left( 6 \right) = {\rm{lo}}{{\rm{g}}_3}9 - 2{\rm{lo}}{{\rm{g}}_2}2 = 0\). Suy ra

\(f\left( t \right) \le f\left( 6 \right) \Leftrightarrow t \le 6 \Leftrightarrow \frac{{x + {y^2}}}{y} \le 6 \Leftrightarrow x + {(y - 3)^2} \le 9\)

Ta đếm các cặp giá trị nguyên dương của \(\left( {x;y} \right)\)

Ta có \({(y - 3)^2} < 9 \Leftrightarrow 0 < y < 6 \Rightarrow y \in \left\{ {1;2;3;4;5} \right\}\)

Ÿ Với \(y = 1;y = 5 \Rightarrow x \le 5 \Rightarrow x \in \left\{ {1;2;3;4;5} \right\}\) suy ra có 10 cặp thỏa mãn.

Ÿ Với \(y = 2;y = 4 \Rightarrow x \le 8 \Rightarrow x \in \left\{ {1;2;3;4;5;6;7;8} \right\}\) suy ra có 16 cặp thỏa mãn.

Ÿ Với \(y = 3 \Rightarrow x \le 9 \Rightarrow x \in \left\{ {1;2;3;4;5;6;7;8;9} \right\}\) suy ra có 9 cặp thỏa mãn.

Vậy có tất cả 35 cặp giá trị nguyên dương thỏa mãn.

Câu 2

A. Cắt và nối DNA tái tổ hợp → tách DNA → đưa DNA tái tổ hợp vào tế bào nhận
B. Tách DNA → đưa DNA tái tổ hợp vào tế bào nhận → cắt và nối tạo DNA tái tổ hợp
C. Đưa DNA tái tổ hợp vào tế bào nhận → cắt và nối tạo DNA tái tổ hợp → tách DNA
D. Tách DNA → cắt và nối tạo DNA tái tổ hợp → đưa DNA tái tổ hợp vào tế bào nhận

Lời giải

Đáp án đúng là D

Phương pháp giải

Đọc lý thuyết đọc lý thuyết về ứng dụng di truyền - kĩ thuật chuyển gene.

Lời giải

Trình tự các bước tạo DNA tái tổ hợp là: Tách DNA → cắt và nối tạo DNA tái tổ hợp → đưa DNA tái tổ hợp vào tế bào nhận.

Câu 3

A. Sự không đồng nhất của lực hấp dẫn từ Mặt trăng.
B. Sự không đồng nhất của lực hấp dẫn từ Trái đất.
C. Sự không đồng nhất của lực hấp dẫn giữa Trái đất và Mặt trăng.
D. Sự không đồng nhất của lực hấp dẫn giữa Mặt trăng và các thiên thể khác trừ Trái đất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. This chance did not happen    
B. By happening this chance
C. This happen did not by chance               

D. This did not happen by chance

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{2\sqrt 6 }}{3}a\).     
B. \(\frac{{\sqrt 6 }}{3}a\).      
C. \(\frac{{\sqrt 3 }}{2}a\).  
D. \(\frac{{\sqrt 6 }}{2}a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP