Câu hỏi:

31/12/2025 0 Lưu

Xác định một từ/ cụm từ SAI về ngữ pháp hoặc ngữ nghĩa, logic, phong cách.

Người kể chuyện ngôi thứ ba là người kể chuyện ẩn danhkhông trực tiếp xuất hiện trong văn bản như một nhân vật, không tham gia vào mạch vận động của cốt truyện, chỉ được nhận biết qua lời kể; thường là người kể chuyện hạn tri.

A. ẩn danh      
B. không trực tiếp        
C. không tham gia    
D. hạn tri

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là D

Phương pháp giải

Căn cứ vào ngữ pháp, ngữ nghĩa, logic, phong cách

Dạng bài tìm lỗi sai

Lời giải

- Câu văn trình bày thông tin về người kể chuyện ở ngôi thứ ba. Các thông tin “ẩn danh”, “không trực tiếp xuất hiện”, “không tham gia vào mạch vận động truyện” đều chính xác. Chỉ có thông tin “hạn tri” là không đúng. Người kể truyện hạn tri chỉ việc không biết hết các thông tin, từ ngữ này phù hợp với người kể chuyện ở ngôi thứ nhất. ->Sửa “hạn tri” thành “toàn tri” (biết hết mọi chuyện).

=> Sửa lại câu: Người kể chuyện ngôi thứ ba là người kể chuyện ẩn danh, không trực tiếp xuất hiện trong văn bản như một nhân vật, không tham gia vào mạch vận động của cốt truyện, chỉ được nhận biết qua lời kể; thường là người kể chuyện toàn tri.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là D

Phương pháp giải

Tính thể tích

Lời giải

Cho khối lăng trụ ABC.A'B'C' có đáy là tam giác đều, A'A = A'B = A'C = a căn 7 (ảnh 1)

Ta có \(A'A = A'B = A'C = a\sqrt 7 \) nên \(A'\) cách đều ba điểm \(A,B,C\). Gọi \(M\) là trung điểm của \(BC\)\(G\) là trọng tâm tam giác đều \(ABC\) suy ra \(A'G \bot \left( {ABC} \right)\)

Gọi \(H\) là hình chiếu của \(B'\) lên \(\left( {ABC} \right),B'C \cap \left( {ABC} \right) = C \Rightarrow HC\) là hình chiếu của \(B'C\) lên \(\left( {ABC} \right)\).

Suy ra \(\left( {B'C\widehat {\left( {ABC} \right)}} \right) = \left( {\widehat {B'C;HC}} \right) = {30^ \circ }\), và

\(B'H = d\left( {B';\left( {ABC} \right)} \right) = d\left( {A';\left( {ABC} \right)} \right) = A'G\) (vì \(A'B'//\left( {ABC} \right)\))

Xét tam giác \(B'HC\) vuông tại \(H\) ta có:

\({\rm{sin}}{30^ \circ } = \frac{{d\left( {B';\left( {ABC} \right)} \right)}}{{B'C}} = \frac{{d\left( {A';\left( {ABC} \right)} \right)}}{{B'C}} = \frac{{A'G}}{{B'C}}\).

Suy ra \(B'C = 2A'G\), đặt \(x = A'G,x > 0 \Rightarrow B'C = 2x\).

Mà ta thấy \(BC \bot \left( {A'AM} \right) \Rightarrow BC \bot A'A \Rightarrow BC \bot B'B \Rightarrow B'BC'C\) là hình chữ nhật.

Xét tam giác \(A'AG\) vuông tại \(G\), suy ra

\(AG = \sqrt {A'{A^2} - A'{G^2}} = \sqrt {7{a^2} - {x^2}} \Rightarrow AM = \frac{3}{2}AG = \frac{3}{2}\sqrt {7{a^2} - {x^2}} \)

\( \Rightarrow AB = BC = AC = \sqrt {3\left( {7{a^2} - {x^2}} \right)} \).

Xét tam giác \(B'BC\) vuông tại \(B\)

\( \Leftrightarrow B'{B^2} + B{C^2} = B'{C^2} \Leftrightarrow 7{a^2} + 3\left( {7{a^2} - {x^2}} \right) = 4{x^2} \Leftrightarrow x = 2a\).

Suy ra \(A'G = 2a \Rightarrow AB = BC = AC = 3a \Rightarrow {S_{ABC}} = \frac{{9\sqrt 3 }}{4}{a^2}\).

Vậy \({V_{ABC.A'B'C'}} = A'G.{S_{ABC}} = 2a.\frac{{9\sqrt 3 }}{4}{a^2} = \frac{{9\sqrt 3 }}{2}{a^3}\).

Câu 2

A. \(\frac{\pi }{{12}}\).   
B. \(\frac{\pi }{6}\). 
C. \(\frac{\pi }{3}\).    
D. \(\frac{\pi }{4}\).

Lời giải

Đáp án đúng là B

Phương pháp giải

Tính chu kỳ của hàm số lượng giác.

Lời giải

Ta có \({\rm{cos}}\left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right)\) có chu kỳ là \(\frac{{2\pi }}{{\frac{\pi }{{12}}}} = 24\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Sự không đồng nhất của lực hấp dẫn từ Mặt trăng.
B. Sự không đồng nhất của lực hấp dẫn từ Trái đất.
C. Sự không đồng nhất của lực hấp dẫn giữa Trái đất và Mặt trăng.
D. Sự không đồng nhất của lực hấp dẫn giữa Mặt trăng và các thiên thể khác trừ Trái đất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Ngày 5 tháng 6 năm 1862.   
B. Ngày 5 tháng 6 năm 1863.
C. Ngày 5 tháng 6 năm 1864.      
D. Ngày 5 tháng 6 năm 1865.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP