Một hộp đựng 11 tấm thẻ được đánh số từ 1 đến 11. Chọn ngẫu nhiên 3 tấm thẻ. Xác suất để tổng số ghi trên 3 tấm thẻ ấy là một số lẻ bằng \(\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản và \(a,b \in \mathbb{Z}\). Tính \(a + b\).
Câu hỏi trong đề: Bài tập ôn tập Toán 10 Kết nối tri thức Chương 9 có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Lời giải
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{11}^3\).
Gọi \(A\) là biến cố “Tổng số ghi trên 3 tấm thẻ là một số lẻ”.
Từ 1 đến 11 có 6 số lẻ và 5 số chẵn. Để có tổng của 3 số là một số lẻ ta có 2 trường hợp.
TH1: Chọn được 1 thẻ mang số lẻ và 2 thẻ mang số chẵn có \(C_6^1 \cdot C_5^2 = 60\) cách.
TH2: Chọn được 3 thẻ mang số lẻ có \(C_6^3 = 20\) cách.
Do đó \(n\left( A \right) = 60 + 20 = 80\).
Suy ra \[P\left( A \right) = \frac{{16}}{{33}} \Rightarrow \left\{ \begin{array}{l}a = 16\\b = 33\end{array} \right. \Rightarrow T = a + b = 49\].
Trả lời: 49.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Không gian mẫu của phép thử là \(\Omega = \left\{ {SSS;NNN;SNS;SSN;NSN;NNS} \right\}\).
b) Biến cố mặt ngửa xuất hiện đúng một lần là \(A = \left\{ {NSS;SNS;SSN} \right\}\).
c) Biến cố mặt sấp xuất hiện ít nhất một lần là \(B = \left\{ {SNN;NSN;SNS;NNN} \right\}\).
Lời giải
Lời giải
a) \(\Omega = \left\{ {SSS;NNN;SNS;SSN;NSN;NNS;NSS;SNN} \right\}\).
b) \(A = \left\{ {NSS;SNS;SSN} \right\}\).
c) \(B = \left\{ {SNN;NSN;NNS;SSN;SNS;NSS;SSS} \right\}\).
d) \(P\left( B \right) = \frac{7}{8}\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Câu 2
Lời giải
Lời giải
Số phần tử không gian mẫu \(n\left( \Omega \right) = 30\).
Gọi \(A\) là biến cố “Thẻ lấy được là số lẻ và không chia hết cho 3”.
Khi đó \(A = \left\{ {1;5;7;11;13;17;19;23;25;29} \right\} \Rightarrow n\left( A \right) = 10\).
Xác suất để thẻ lấy được mang số lẻ và không chia hết cho 3 là \(P\left( A \right) = \frac{{10}}{{30}} = \frac{1}{3}\). Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) \(n\left( \Omega \right) = 8\).
b) Gọi \(A\) là biến cố “Gieo được mặt sấp”. Khi đó \(n\left( {\overline A } \right) = 1\).
c) Gọi \(A\) là biến cố “Gieo được mặt sấp”. Khi đó \(P\left( A \right) = \frac{1}{8}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.