Một xe khách chất lượng cao đi từ Cao Bằng đến Hà Nội chở được nhiều nhất 50 hành khách trên một chuyến đi. Theo tính toán của nhà xe, nếu xe chở được k khách thì giá tiền mà mỗi khách phải trả khi đi tuyến đường này là trăm đồng. Tính số hành khách trên mỗi chuyến xe sao cho tổng số tiền thu được từ hành khách nhiều nhất. (nhập đáp án vào ô trống)
Đáp án: ___
Quảng cáo
Trả lời:
Đáp án đúng là "40"
Phương pháp giải
Tìm giá trị lớn nhất của hàm số thể hiện số tiền thu được trên mỗi chuyến xe.
Lời giải
Số tiền thu được trên mỗi chuyến xe là \(T\left( k \right) = k{\left( {180 - \frac{{3k}}{2}} \right)^2}\) với \(k \in \mathbb{N},0 \le k \le 50\).
Xét hàm số \(T\left( k \right) = k{\left( {180 - \frac{{3k}}{2}} \right)^2}\) với \(k \in \left[ {0;50} \right]\).
Dễ thấy \(T\left( k \right)\) liên tục trên \(\left[ {0;50} \right]\).
Ta có \(T'\left( k \right) = {\left( {180 - \frac{{3k}}{2}} \right)^2} + 2k\left( {180 - \frac{{3k}}{2}} \right)\left( { - \frac{3}{2}} \right) = \left( {180 - \frac{{3k}}{2}} \right)\left( {180 - \frac{{9k}}{2}} \right)\)
và \(T'\left( k \right) = 0 \Leftrightarrow \left( {180 - \frac{{3k}}{2}} \right)\left( {180 - \frac{{9k}}{2}} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{k = 120 \notin \left[ {0;50} \right]}\\{k = 40 \in \left[ {0;50} \right]}\end{array}} \right.\).
Ta tính được \(T\left( 0 \right) = 0,T\left( {50} \right) = 551250,T\left( {40} \right) = 576000\).
Do đó .
Vậy số tiền thu được nhiều nhất khi xe chở 40 hành khách và số tiền đó là 57600000 đồng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Phương pháp giải
Sử dụng định luật phóng xạ về số hạt còn lại sau thời gian t: \(N = {N_0}{2^{ - \frac{t}{T}}}\)
Lời giải
Số hạt đã phân rã trong thời gian t:
\({N_\alpha } = {N_0}.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{8\^o = {N_0}.\left( {1 - {2^{\frac{{ - 8}}{T}}}} \right)}\\{12\^o = {N_0}.\left( {1 - {2^{\frac{{ - 16}}{T}}}} \right)}\end{array} \Rightarrow \frac{8}{{12}}} \right. = \frac{{1 - {2^{\frac{{ - 8}}{T}}}}}{{1 - {2^{\frac{{ - 16}}{T}}}}} \Rightarrow T = 8s\)
Lời giải
Đáp án đúng là "5"
Phương pháp giải
Tính chất của tích phân.
Lời giải
Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{\rm{1}}\,\,{\rm{khi}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).
Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).
Ta có \(F\left( { - 1} \right) = - 1 \Leftrightarrow - 1 + {C_1} = - 1 \Leftrightarrow {C_1} = 0\).
Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\)
\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)

Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\). Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


