Biết rằng hàm số \(y = \left( {x - m} \right)\left( {x - 1} \right)\left( {x + m - 2} \right)\) (\(m\) là tham số khác 1) có hai điểm cực trị. Tổng giá trị cực đại và giá trị cực tiểu của hàm số này bằng
Quảng cáo
Trả lời:
Đáp án đúng là B
Phương pháp giải
Xác định cực trị hàm số
Lời giải
Ta có: \(y = {x^3} - 3{x^2} + x\left( { - {m^2} + 2m + 2} \right) + {m^2} - 2m\).
Khi đó: \(y' = 3{x^2} - 6x - {m^2} + 2m + 2\).
Hàm số có hai điểm cực trị khi phương trình \(y' = 0\) có hai nghiệm phân biệt
\( \Leftrightarrow {\rm{\Delta }} = 9 - 3\left( { - {m^2} + 2m + 2} \right) = 3{m^2} - 6m + 3 = 3{(m - 1)^2} > 0 \Leftrightarrow m \ne 1\).
Gọi \({x_1},{x_2}\) là nghiệm của phương trình \(y' = 0\).
Theo Viet ta có: \({x_1} + {x_2} = 2\)
Thực hiện phép chia \(y\) cho \(y'\) ta được:
\(y = \frac{1}{3}\left( {x - 1} \right)y' + \frac{1}{3}\left( { - 2{m^2} + 4m - 2} \right)x + \frac{1}{3}\left( {2{m^2} - 4m + 2} \right)\).
Khi đó: \({y_1} = \frac{1}{3}\left( { - 2{m^2} + 4m - 2} \right){x_1} + \frac{1}{3}\left( {2{m^2} - 4m + 2} \right)\).
và \({y_2} = \frac{1}{3}\left( { - 2{m^2} + 4m - 2} \right){x_2} + \frac{1}{3}\left( {2{m^2} - 4m + 2} \right)\).
Vậy tổng giá trị cực đại và giá trị cực tiểu của hàm số này là:
\({y_1} + {y_2} = \frac{1}{3}\left( { - 2{m^2} + 4m - 2} \right)\left( {{x_1} + {x_2}} \right) + \frac{2}{3}\left( {2{m^2} - 4m + 2} \right) = - \frac{2}{3}\left( {2{m^2} - 4m + 2} \right) + \frac{2}{3}\left( {2{m^2} - 4m + 2} \right) = 0\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Phương pháp giải
Sử dụng định luật phóng xạ về số hạt còn lại sau thời gian t: \(N = {N_0}{2^{ - \frac{t}{T}}}\)
Lời giải
Số hạt đã phân rã trong thời gian t:
\({N_\alpha } = {N_0}.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{8\^o = {N_0}.\left( {1 - {2^{\frac{{ - 8}}{T}}}} \right)}\\{12\^o = {N_0}.\left( {1 - {2^{\frac{{ - 16}}{T}}}} \right)}\end{array} \Rightarrow \frac{8}{{12}}} \right. = \frac{{1 - {2^{\frac{{ - 8}}{T}}}}}{{1 - {2^{\frac{{ - 16}}{T}}}}} \Rightarrow T = 8s\)
Lời giải
Đáp án đúng là "11"
Phương pháp giải
Giải phương trình lượng giác.
Lời giải
ĐКХĐ: \(\left\{ {\begin{array}{*{20}{l}}{{\rm{sin}}x \ne 0}\\{{\rm{cos}}x \ne 0}\end{array}} \right.\).
\(\frac{{2{\rm{sin}}x}}{{{\rm{cot}}x}} - \frac{{{\rm{tan}}x}}{{{\rm{sin}}x}} = 2\left( {{\rm{sin}}x - {\rm{cos}}x} \right) \Leftrightarrow 2{\rm{si}}{{\rm{n}}^2}x - {\rm{tan}}x{\rm{cot}}x\) \( = 2\left( {{\rm{sin}}x - {\rm{cos}}x} \right){\rm{sin}}x{\rm{cot}}x\)
\( \Leftrightarrow 2{\sin ^2}x - 1 = 2\left( {\sin x - \cos x} \right)\cos x \Leftrightarrow 2{\sin ^2}x - 1 = 2\sin x.{\rm{cos}}x - 2{\rm{co}}{{\rm{s}}^2}x\)
\( \Leftrightarrow 2{\rm{si}}{{\rm{n}}^2}x + 2{\rm{co}}{{\rm{s}}^2}x - 1 = {\rm{sin}}2x \Leftrightarrow {\rm{sin}}2x = 1 \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi \Leftrightarrow x = \frac{\pi }{4} + k\pi \left( {k \in Z} \right)\)
Đối chiếu điều kiện, nghiệm phương trình là \(x = \frac{\pi }{4} + k\pi ,k \in Z\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 4}\\{b = 1}\end{array} \Rightarrow P = 2a + 3b = 2.4 + 3.1 = 11} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


