Biết rằng hàm số \(y = \left( {x - m} \right)\left( {x - 1} \right)\left( {x + m - 2} \right)\) (\(m\) là tham số khác 1) có hai điểm cực trị. Tổng giá trị cực đại và giá trị cực tiểu của hàm số này bằng
Quảng cáo
Trả lời:
Đáp án đúng là B
Phương pháp giải
Xác định cực trị hàm số
Lời giải
Ta có: \(y = {x^3} - 3{x^2} + x\left( { - {m^2} + 2m + 2} \right) + {m^2} - 2m\).
Khi đó: \(y' = 3{x^2} - 6x - {m^2} + 2m + 2\).
Hàm số có hai điểm cực trị khi phương trình \(y' = 0\) có hai nghiệm phân biệt
\( \Leftrightarrow {\rm{\Delta }} = 9 - 3\left( { - {m^2} + 2m + 2} \right) = 3{m^2} - 6m + 3 = 3{(m - 1)^2} > 0 \Leftrightarrow m \ne 1\).
Gọi \({x_1},{x_2}\) là nghiệm của phương trình \(y' = 0\).
Theo Viet ta có: \({x_1} + {x_2} = 2\)
Thực hiện phép chia \(y\) cho \(y'\) ta được:
\(y = \frac{1}{3}\left( {x - 1} \right)y' + \frac{1}{3}\left( { - 2{m^2} + 4m - 2} \right)x + \frac{1}{3}\left( {2{m^2} - 4m + 2} \right)\).
Khi đó: \({y_1} = \frac{1}{3}\left( { - 2{m^2} + 4m - 2} \right){x_1} + \frac{1}{3}\left( {2{m^2} - 4m + 2} \right)\).
và \({y_2} = \frac{1}{3}\left( { - 2{m^2} + 4m - 2} \right){x_2} + \frac{1}{3}\left( {2{m^2} - 4m + 2} \right)\).
Vậy tổng giá trị cực đại và giá trị cực tiểu của hàm số này là:
\({y_1} + {y_2} = \frac{1}{3}\left( { - 2{m^2} + 4m - 2} \right)\left( {{x_1} + {x_2}} \right) + \frac{2}{3}\left( {2{m^2} - 4m + 2} \right) = - \frac{2}{3}\left( {2{m^2} - 4m + 2} \right) + \frac{2}{3}\left( {2{m^2} - 4m + 2} \right) = 0\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Phương pháp giải
Sử dụng định luật phóng xạ về số hạt còn lại sau thời gian t: \(N = {N_0}{2^{ - \frac{t}{T}}}\)
Lời giải
Số hạt đã phân rã trong thời gian t:
\({N_\alpha } = {N_0}.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{8\^o = {N_0}.\left( {1 - {2^{\frac{{ - 8}}{T}}}} \right)}\\{12\^o = {N_0}.\left( {1 - {2^{\frac{{ - 16}}{T}}}} \right)}\end{array} \Rightarrow \frac{8}{{12}}} \right. = \frac{{1 - {2^{\frac{{ - 8}}{T}}}}}{{1 - {2^{\frac{{ - 16}}{T}}}}} \Rightarrow T = 8s\)
Lời giải
Đáp án đúng là "5"
Phương pháp giải
Tính chất của tích phân.
Lời giải
Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{\rm{1}}\,\,{\rm{khi}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).
Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).
Ta có \(F\left( { - 1} \right) = - 1 \Leftrightarrow - 1 + {C_1} = - 1 \Leftrightarrow {C_1} = 0\).
Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\)
\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)

Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\). Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


