Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\left( {a,b,c,d \in \mathbb{R};c \ne 0;d \ne 0} \right)\) có đồ thị (\(C\)) và đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ dưới đây
Biết \(\left( C \right)\) cắt trục hoành tại điểm có hoành độ bằng 3. Tiếp tuyến của \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục hoành có phương trình là.
Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\left( {a,b,c,d \in \mathbb{R};c \ne 0;d \ne 0} \right)\) có đồ thị (\(C\)) và đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ dưới đây

Biết \(\left( C \right)\) cắt trục hoành tại điểm có hoành độ bằng 3. Tiếp tuyến của \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục hoành có phương trình là.
Quảng cáo
Trả lời:
Đáp án đúng là D
Phương pháp giải
Tìm phương trình đường thẳng tiếp tuyến.
Lời giải
Từ đồ thị hàm số \(y = f'\left( x \right)\) ta thấy đồ thị hàm số có tiệm cận đứng là \(x = \frac{{ - c}}{d} = - 1\) và đồ thị hàm số đi qua điểm \(I\left( {0; - 4} \right)\)
Đồ thị hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) đi qua điểm (3;0) nên ta có: \(\left\{ {\begin{array}{*{20}{l}}{c = d}\\{\frac{{ad - bc}}{{{d^2}}} = - 4}\\{3a + b = 0}\end{array}} \right.\)
Suy ra \(c = d = - a = \frac{b}{3}\). Suy ra \(f\left( x \right) = \frac{{ - x + 3}}{{x + 1}}\).
Phương trình tiếp điểm cần tìm là \(4y + x - 3 = 0\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Phương pháp giải
Sử dụng định luật phóng xạ về số hạt còn lại sau thời gian t: \(N = {N_0}{2^{ - \frac{t}{T}}}\)
Lời giải
Số hạt đã phân rã trong thời gian t:
\({N_\alpha } = {N_0}.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{8\^o = {N_0}.\left( {1 - {2^{\frac{{ - 8}}{T}}}} \right)}\\{12\^o = {N_0}.\left( {1 - {2^{\frac{{ - 16}}{T}}}} \right)}\end{array} \Rightarrow \frac{8}{{12}}} \right. = \frac{{1 - {2^{\frac{{ - 8}}{T}}}}}{{1 - {2^{\frac{{ - 16}}{T}}}}} \Rightarrow T = 8s\)
Lời giải
Đáp án đúng là "5"
Phương pháp giải
Tính chất của tích phân.
Lời giải
Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{\rm{1}}\,\,{\rm{khi}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).
Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).
Ta có \(F\left( { - 1} \right) = - 1 \Leftrightarrow - 1 + {C_1} = - 1 \Leftrightarrow {C_1} = 0\).
Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\)
\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)

Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\). Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


