Câu hỏi:

06/01/2026 60 Lưu

Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\left( {a,b,c,d \in \mathbb{R};c \ne 0;d \ne 0} \right)\) có đồ thị (\(C\)) và đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ dưới đây

Cho hàm số y = f(x) = {{ax + b / cx + d}} (ảnh 1)

Biết \(\left( C \right)\) cắt trục hoành tại điểm có hoành độ bằng 3. Tiếp tuyến của \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục hoành có phương trình là.

    

A. \(y + 4x + 3 = 0\).       
B. \(y - 4x + 3 = 0\).  
C. \(4y + x + 3 = 0\).         
D. \(4y + x - 3 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là D

Phương pháp giải

Tìm phương trình đường thẳng tiếp tuyến.

Lời giải

Từ đồ thị hàm số \(y = f'\left( x \right)\) ta thấy đồ thị hàm số có tiệm cận đứng là \(x = \frac{{ - c}}{d} = - 1\) và đồ thị hàm số đi qua điểm \(I\left( {0; - 4} \right)\)

Đồ thị hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) đi qua điểm (3;0) nên ta có: \(\left\{ {\begin{array}{*{20}{l}}{c = d}\\{\frac{{ad - bc}}{{{d^2}}} = - 4}\\{3a + b = 0}\end{array}} \right.\)

Suy ra \(c = d = - a = \frac{b}{3}\). Suy ra \(f\left( x \right) = \frac{{ - x + 3}}{{x + 1}}\).

Phương trình tiếp điểm cần tìm là \(4y + x - 3 = 0\).  

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là A

Phương pháp giải

Sử dụng định luật phóng xạ về số hạt còn lại sau thời gian t: \(N = {N_0}{2^{ - \frac{t}{T}}}\)

Lời giải

Số hạt đã phân rã trong thời gian t:

\({N_\alpha } = {N_0}.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{8\^o = {N_0}.\left( {1 - {2^{\frac{{ - 8}}{T}}}} \right)}\\{12\^o = {N_0}.\left( {1 - {2^{\frac{{ - 16}}{T}}}} \right)}\end{array} \Rightarrow \frac{8}{{12}}} \right. = \frac{{1 - {2^{\frac{{ - 8}}{T}}}}}{{1 - {2^{\frac{{ - 16}}{T}}}}} \Rightarrow T = 8s\)

Lời giải

(1) 5

Đáp án đúng là "5"

Phương pháp giải

Tính chất của tích phân.

Lời giải

Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{\rm{1}}\,\,{\rm{khi}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).

Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).

Ta có \(F\left( { - 1} \right) =  - 1 \Leftrightarrow  - 1 + {C_1} =  - 1 \Leftrightarrow {C_1} = 0\).

Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\)

\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)

Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\). Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. thắng lợi trên mặt trận ngoại giao.
B. thắng lợi trên mặt trận quân sự.
C. cuộc phản chiến của lính Mỹ, đòi rút quân về nước.
D. phong trào phản đối chiến tranh trong lòng Mĩ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP