Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\left( {a,b,c,d \in \mathbb{R};c \ne 0;d \ne 0} \right)\) có đồ thị (\(C\)) và đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ dưới đây
Biết \(\left( C \right)\) cắt trục hoành tại điểm có hoành độ bằng 3. Tiếp tuyến của \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục hoành có phương trình là.
Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\left( {a,b,c,d \in \mathbb{R};c \ne 0;d \ne 0} \right)\) có đồ thị (\(C\)) và đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ dưới đây

Biết \(\left( C \right)\) cắt trục hoành tại điểm có hoành độ bằng 3. Tiếp tuyến của \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục hoành có phương trình là.
Quảng cáo
Trả lời:
Đáp án đúng là D
Phương pháp giải
Tìm phương trình đường thẳng tiếp tuyến.
Lời giải
Từ đồ thị hàm số \(y = f'\left( x \right)\) ta thấy đồ thị hàm số có tiệm cận đứng là \(x = \frac{{ - c}}{d} = - 1\) và đồ thị hàm số đi qua điểm \(I\left( {0; - 4} \right)\)
Đồ thị hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) đi qua điểm (3;0) nên ta có: \(\left\{ {\begin{array}{*{20}{l}}{c = d}\\{\frac{{ad - bc}}{{{d^2}}} = - 4}\\{3a + b = 0}\end{array}} \right.\)
Suy ra \(c = d = - a = \frac{b}{3}\). Suy ra \(f\left( x \right) = \frac{{ - x + 3}}{{x + 1}}\).
Phương trình tiếp điểm cần tìm là \(4y + x - 3 = 0\).Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Phương pháp giải
Sử dụng định luật phóng xạ về số hạt còn lại sau thời gian t: \(N = {N_0}{2^{ - \frac{t}{T}}}\)
Lời giải
Số hạt đã phân rã trong thời gian t:
\({N_\alpha } = {N_0}.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{8\^o = {N_0}.\left( {1 - {2^{\frac{{ - 8}}{T}}}} \right)}\\{12\^o = {N_0}.\left( {1 - {2^{\frac{{ - 16}}{T}}}} \right)}\end{array} \Rightarrow \frac{8}{{12}}} \right. = \frac{{1 - {2^{\frac{{ - 8}}{T}}}}}{{1 - {2^{\frac{{ - 16}}{T}}}}} \Rightarrow T = 8s\)
Lời giải
Đáp án đúng là "11"
Phương pháp giải
Giải phương trình lượng giác.
Lời giải
ĐКХĐ: \(\left\{ {\begin{array}{*{20}{l}}{{\rm{sin}}x \ne 0}\\{{\rm{cos}}x \ne 0}\end{array}} \right.\).
\(\frac{{2{\rm{sin}}x}}{{{\rm{cot}}x}} - \frac{{{\rm{tan}}x}}{{{\rm{sin}}x}} = 2\left( {{\rm{sin}}x - {\rm{cos}}x} \right) \Leftrightarrow 2{\rm{si}}{{\rm{n}}^2}x - {\rm{tan}}x{\rm{cot}}x\) \( = 2\left( {{\rm{sin}}x - {\rm{cos}}x} \right){\rm{sin}}x{\rm{cot}}x\)
\( \Leftrightarrow 2{\sin ^2}x - 1 = 2\left( {\sin x - \cos x} \right)\cos x \Leftrightarrow 2{\sin ^2}x - 1 = 2\sin x.{\rm{cos}}x - 2{\rm{co}}{{\rm{s}}^2}x\)
\( \Leftrightarrow 2{\rm{si}}{{\rm{n}}^2}x + 2{\rm{co}}{{\rm{s}}^2}x - 1 = {\rm{sin}}2x \Leftrightarrow {\rm{sin}}2x = 1 \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi \Leftrightarrow x = \frac{\pi }{4} + k\pi \left( {k \in Z} \right)\)
Đối chiếu điều kiện, nghiệm phương trình là \(x = \frac{\pi }{4} + k\pi ,k \in Z\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 4}\\{b = 1}\end{array} \Rightarrow P = 2a + 3b = 2.4 + 3.1 = 11} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


