Câu hỏi:

06/01/2026 233 Lưu

Người ta làm một cái lu đựng nước bằng cách cắt bỏ 2 chỏm của một khối cầu có bán kính 5 dm bằng 2 mặt phẳng vuông góc với đường kính và cách tâm khối cầu 3 dm. Tính thể tích của chiếc lu.

Người ta làm một cái lu đựng nước bằng cách cắt bỏ 2 chỏm của một khối cầu có bán kính 5 dm bằng 2 mặt phẳng (ảnh 1)

A. \(41\pi \left( {{\rm{d}}{{\rm{m}}^3}} \right)\). 
B. \(132\pi \left( {{\rm{d}}{{\rm{m}}^3}} \right)\).  
C. \(43\pi \left( {{\rm{d}}{{\rm{m}}^3}} \right)\).                    
D. \(\frac{{100}}{3}\pi \left( {{\rm{d}}{{\rm{m}}^3}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là B

Phương pháp giải

Ứng dụng tích phân để tính thể tích

Lời giải

Người ta làm một cái lu đựng nước bằng cách cắt bỏ 2 chỏm của một khối cầu có bán kính 5 dm bằng 2 mặt phẳng (ảnh 2)

Đặt hệ trục với tâm \(O\) là tâm của mặt cầu, đường thẳng đứng là \(Ox\), đường ngang là \(Oy\).

Ta có phương trình của đường tròn lớn là \({x^2} + {y^2} = 25\).

Thể tích cái lu là thể tích của vật tròn xoay tạo thành khi quay hình giới hạn bởi các đường cong \(y = \sqrt {25 - {x^2}} \), trục \(Ox\), đường thẳng \(x = - 3,x = 3\) quay quanh \(Ox\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là A

Phương pháp giải

Sử dụng định luật phóng xạ về số hạt còn lại sau thời gian t: \(N = {N_0}{2^{ - \frac{t}{T}}}\)

Lời giải

Số hạt đã phân rã trong thời gian t:

\({N_\alpha } = {N_0}.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{8\^o = {N_0}.\left( {1 - {2^{\frac{{ - 8}}{T}}}} \right)}\\{12\^o = {N_0}.\left( {1 - {2^{\frac{{ - 16}}{T}}}} \right)}\end{array} \Rightarrow \frac{8}{{12}}} \right. = \frac{{1 - {2^{\frac{{ - 8}}{T}}}}}{{1 - {2^{\frac{{ - 16}}{T}}}}} \Rightarrow T = 8s\)

Lời giải

(1) 5

Đáp án đúng là "5"

Phương pháp giải

Tính chất của tích phân.

Lời giải

Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{\rm{1}}\,\,{\rm{khi}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).

Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).

Ta có \(F\left( { - 1} \right) =  - 1 \Leftrightarrow  - 1 + {C_1} =  - 1 \Leftrightarrow {C_1} = 0\).

Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\)

\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)

Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\). Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. thắng lợi trên mặt trận ngoại giao.
B. thắng lợi trên mặt trận quân sự.
C. cuộc phản chiến của lính Mỹ, đòi rút quân về nước.
D. phong trào phản đối chiến tranh trong lòng Mĩ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP