Chọn cặp từ/ cụm từ thích hợp nhất điền vào chỗ trống.
Trên quan điểm về phúc lợi và sự bình đẳng, _____ giới trở thành vấn đề nan giải, làm suy giảm lợi ích và là một dạng _____ trong xã hội.
Chọn cặp từ/ cụm từ thích hợp nhất điền vào chỗ trống.
Trên quan điểm về phúc lợi và sự bình đẳng, _____ giới trở thành vấn đề nan giải, làm suy giảm lợi ích và là một dạng _____ trong xã hội.
Quảng cáo
Trả lời:
Đáp án đúng là A
Phương pháp giải
Căn cứ hiểu biết về nội dung câu văn.
Dạng bài điền từ
Lời giải
- Vị trí điền thứ nhất: phần sau vế câu có từ “nan giải”, vì vậy vị trí điền phải là một từ ngữ biểu thị sự tiêu cực trong bình đẳng -> đáp án B loại vì “bình đẳng giới” mang nghĩa tích cực không logic với từ “nan giải” trong câu.
- Phân tích, suy luận:
+ Đáp án A đúng vì các từ “bất bình đẳng” và “bất công” nhấn mạnh về sự bất bình đẳng giới và tác động tiêu cực của nó đến xã hội.
+ Đáp án C sai vì “phân biệt” không đủ rõ ràng để nhấn mạnh sự suy giảm lợi ích trong xã hội.
+ Đáp án D sai vì “bạo lực giới” chỉ tập trung vào khía cạnh bạo lực mà không đề cập đến sự bình đẳng hay phúc lợi.
=> Từ/ cụm từ thích hợp nhất để điền vào chỗ trống trong câu văn trên là: bất bình đẳng / bất công.
Câu hoàn chỉnh: Trên quan điểm về phúc lợi và sự bình đẳng, bất bình đẳng giới trở thành vấn đề nan giải, làm suy giảm lợi ích và là một dạng bất công trong xã hội.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Phương pháp giải
Sử dụng định luật phóng xạ về số hạt còn lại sau thời gian t: \(N = {N_0}{2^{ - \frac{t}{T}}}\)
Lời giải
Số hạt đã phân rã trong thời gian t:
\({N_\alpha } = {N_0}.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{8\^o = {N_0}.\left( {1 - {2^{\frac{{ - 8}}{T}}}} \right)}\\{12\^o = {N_0}.\left( {1 - {2^{\frac{{ - 16}}{T}}}} \right)}\end{array} \Rightarrow \frac{8}{{12}}} \right. = \frac{{1 - {2^{\frac{{ - 8}}{T}}}}}{{1 - {2^{\frac{{ - 16}}{T}}}}} \Rightarrow T = 8s\)
Lời giải
Đáp án đúng là "5"
Phương pháp giải
Tính chất của tích phân.
Lời giải
Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{\rm{1}}\,\,{\rm{khi}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).
Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).
Ta có \(F\left( { - 1} \right) = - 1 \Leftrightarrow - 1 + {C_1} = - 1 \Leftrightarrow {C_1} = 0\).
Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\)
\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)

Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\). Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


