Chọn cặp từ/ cụm từ thích hợp nhất điền vào chỗ trống.
Chất béo hình thành một lớp bảo vệ cho cơ thể giúp duy trì _____ để cơ thể không bị ảnh hưởng khi nhiệt độ _____ quá nóng hay quá lạnh.
Chọn cặp từ/ cụm từ thích hợp nhất điền vào chỗ trống.
Chất béo hình thành một lớp bảo vệ cho cơ thể giúp duy trì _____ để cơ thể không bị ảnh hưởng khi nhiệt độ _____ quá nóng hay quá lạnh.
C. thân nhiệt/ môi trường
Quảng cáo
Trả lời:
Đáp án đúng là C
Phương pháp giải
Căn cứ hiểu biết về nội dung câu văn.
Dạng bài điền từ
Lời giải
- Phân tích, suy luận:
+ Đáp án A và D sai vì từ “xuống thấp” hay từ “tăng cao” không phù hợp khi kết hợp với cụm từ “quá nóng hay quá lạnh”. Vì “xuống thấp” chỉ trạng thái nhiệt độ lạnh còn “tăng cao” chỉ trạng thái nhiệt độ nóng.
+ Đáp án B sai vì “dưỡng chất” không liên quan trực tiếp đến việc bảo vệ cơ thể khỏi nhiệt độ môi trường.
+ Đáp án C đúng vì “thân nhiệt” là thuật ngữ chính xác để chỉ nhiệt độ bên trong cơ thể, và nó liên quan đến việc duy trì trạng thái ổn định cho cơ thể; “môi trường” đề cập đến các điều kiện bên ngoài có thể ảnh hưởng đến thân nhiệt của cơ thể.
=> Từ/ cụm từ thích hợp nhất để điền vào chỗ trống trong câu văn trên là: thân nhiệt/ môi trường.
Câu hoàn chỉnh: Chất béo hình thành một lớp bảo vệ cho cơ thể giúp duy trì thân nhiệt để cơ thể không bị ảnh hưởng khi nhiệt độ môi trường quá nóng hay quá lạnh.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Phương pháp giải
Sử dụng định luật phóng xạ về số hạt còn lại sau thời gian t: \(N = {N_0}{2^{ - \frac{t}{T}}}\)
Lời giải
Số hạt đã phân rã trong thời gian t:
\({N_\alpha } = {N_0}.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{8\^o = {N_0}.\left( {1 - {2^{\frac{{ - 8}}{T}}}} \right)}\\{12\^o = {N_0}.\left( {1 - {2^{\frac{{ - 16}}{T}}}} \right)}\end{array} \Rightarrow \frac{8}{{12}}} \right. = \frac{{1 - {2^{\frac{{ - 8}}{T}}}}}{{1 - {2^{\frac{{ - 16}}{T}}}}} \Rightarrow T = 8s\)
Lời giải
Đáp án đúng là "5"
Phương pháp giải
Tính chất của tích phân.
Lời giải
Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{\rm{1}}\,\,{\rm{khi}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).
Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).
Ta có \(F\left( { - 1} \right) = - 1 \Leftrightarrow - 1 + {C_1} = - 1 \Leftrightarrow {C_1} = 0\).
Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\)
\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)

Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\). Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


