Câu hỏi:

06/01/2026 41 Lưu

Mục đích chủ yếu của việc đẩy mạnh chế biến sản phẩm cây dược liệu ở Trung du và miền núi Bắc Bộ là

A. thay đổi cơ cấu sản xuất, tạo việc làm mới.

B. thuận tiện cho bảo quản, nâng cao thu nhập.

C. nâng cao giá trị, tăng sản phẩm hàng hóa.
D. thúc đẩy xuất khẩu, thay đổi cơ cấu kinh tế.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là C

Phương pháp giải

Dựa vào lí thuyết về Trung du và miền núi Bắc Bộ.

Lời giải

Gạch chân từ khóa: chế biến sản phẩm.

Mục đích lớn nhất của việc chế biến sản phẩm là nâng cao giá trị sản phẩm.

=> Mục đích chủ yếu của việc đẩy mạnh chế biến sản phẩm cây dược liệu ở Trung du và miền núi Bắc Bộ là nâng cao giá trị, tăng sản phẩm hàng hóa (tạo ra nhiều sản phẩm => đáp ứng nhu cầu ngày càng lớn của thị trường, tăng cường xuất khẩu).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là A

Phương pháp giải

Sử dụng định luật phóng xạ về số hạt còn lại sau thời gian t: \(N = {N_0}{2^{ - \frac{t}{T}}}\)

Lời giải

Số hạt đã phân rã trong thời gian t:

\({N_\alpha } = {N_0}.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{8\^o = {N_0}.\left( {1 - {2^{\frac{{ - 8}}{T}}}} \right)}\\{12\^o = {N_0}.\left( {1 - {2^{\frac{{ - 16}}{T}}}} \right)}\end{array} \Rightarrow \frac{8}{{12}}} \right. = \frac{{1 - {2^{\frac{{ - 8}}{T}}}}}{{1 - {2^{\frac{{ - 16}}{T}}}}} \Rightarrow T = 8s\)

Lời giải

(1) 5

Đáp án đúng là "5"

Phương pháp giải

Tính chất của tích phân.

Lời giải

Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{\rm{1}}\,\,{\rm{khi}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).

Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\).

Ta có \(F\left( { - 1} \right) =  - 1 \Leftrightarrow  - 1 + {C_1} =  - 1 \Leftrightarrow {C_1} = 0\).

Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\)

\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)

Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{x + {C_1}\,\,{\rm{khi}}\,\, - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1\,\,{\rm{khi}}\,\,2 \le x \le 6}\end{array}} \right.\). Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. thắng lợi trên mặt trận ngoại giao.
B. thắng lợi trên mặt trận quân sự.
C. cuộc phản chiến của lính Mỹ, đòi rút quân về nước.
D. phong trào phản đối chiến tranh trong lòng Mĩ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP