Hình minh hoạ sơ đồ một ngôi nhà kho của ôn F trong hệ trục toạ độ \(Oxyz\), trong đó nền nhà, bốn bức tường và hai mái nhà đều là hình chữ nhật. Đơn vị của hệ trục là mét.
Hình minh hoạ sơ đồ một ngôi nhà kho của ôn F trong hệ trục toạ độ \(Oxyz\), trong đó nền nhà, bốn bức tường và hai mái nhà đều là hình chữ nhật. Đơn vị của hệ trục là mét.

a) [NB] Toạ độ điểm \(A\) là \(\left( {4;\,0;\,0} \right)\).
b) [TH] Toạ độ \(\overrightarrow {AH} = \left( {4;\,5;\,3} \right)\).
c) [TH] Thể tích của nhà kho là \(70\,\left( {{m^2}} \right)\).
Quảng cáo
Trả lời:

a) [NB] Toạ độ điểm \(A\) là \(\left( {4;\,0;\,0} \right)\). Đúng
Vì điểm \(A \in Ox\) và hoành độ điểm \(A\) bằng hoành độ điểm \(B\).
b) [TH] Toạ độ \(\overrightarrow {AH} = \left( {4;\,5;\,3} \right)\). Sai
Ta có \(C\left( {0;\,5;\,0} \right),\,\,H\left( {0;\,5;\,3} \right),\,F\left( {4;\,0;\,3} \right)\)
\(\overrightarrow {AH} = \left( {0 - 4;\,5 - 0;\,3 - 0} \right) = \left( { - 4;\,5;\,3} \right)\).
c) [TH] Thể tích của nhà kho là \(70\,\left( {{m^2}} \right)\). Đúng
Gọi \(V\) là thể tích ngôi nhà
Ta có \(OA = EF = 4,\,OE = 3,\,OC = EH = 5,\,EP = FP = \sqrt 5 ,\,\)
\(V = {V_{OABC.EFGH}} + {V_{EFP.HGQ}} = 3.4.5 + \frac{1}{2}.1.4.5 = 70\,\left( {{m^2}} \right)\)
d) [VD,VDC] Ông F muốn thiết kế một dây đèn bên trong nhà kho theo phong cách Chrismas, dây đèn giăng từ vị trí \(O\) kéo thẳng đến một điểm trên cây cột \(BG\)rồi lại kéo thẳng về một điểm trên cây cột \(OE\) rồi kéo thẳng đến vị trị \(G\). Chi phí cho 1 mét dây đèn là 50.000 đồng. Ông F đã tính toán để tiết kiệm nhất có thể và chi 970.000 đồng cho công trình trên (làm tròn đến hàng nghìn).
Gọi các điểm tương ứng trên trụ \(BG\), \(OE\) là \(M,\,N\) thì chiều dài của dây đèn là \(OM + MN + NG\)
\(M\left( {4;\,5;\,a} \right),\,N\left( {0;\,0;\,b} \right),\,0 < a < b < 3\).

Ta trải phẳng hình ra ta được \(OM + MN + NG = OM + MN' + N'G' \ge OG'\)
Do đó \(OM + MN + NG\) nhỏ nhất khi \(O;\,M;\,N';\,G'\) thẳng hàng.
\(OG' = \sqrt {{{\left( {3\sqrt {41} } \right)}^2} + {3^2}} = \sqrt {378} \)
Số tiền cần dung là: \(50.000\sqrt {378} \approx 972.111,104761\)đồng
Làm tròn đến hàng nghìn: \(972\) nghìn.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Quả táo cách bức tường \(4m\).
b) Một người bắn một mũi tên với đầu mũi tên là \(B\left( {2; - 1;4} \right)\) theo hướng \(\vec a = \left( {2;4;0} \right)\) thì mũi tên bay xuyên qua trái táo.
c) Mũi tên cắm vào bức tường tại điểm \(C\left( {5;5;4} \right)\).
Lời giải
a) Khoảng cách từ quả táo đến bức tường: \(d\left( {M;\left( P \right)} \right) = \frac{{\left| {1 - 2.\left( { - 3} \right) + 2.4 - 3} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} }} = \frac{{12}}{3} = 4\).
b) Phương trình đường thẳng qua \(B\) và nhận véctơ \(\overrightarrow a \) làm véc tơ chỉ phương là
\(\Delta :\left\{ \begin{array}{l}x = 2 + 2t\\y = - 1 + 4t\\z = 4\end{array} \right.\)
Thay tọa độ điểm \(M\) vào phương trình đường thẳng trên ta được
\(\left\{ \begin{array}{l}1 = 2 + 2t\\ - 3 = - 1 + 4t\\4 = 4\end{array} \right. \Leftrightarrow t = - \frac{1}{2}\), suy ra điểm \(M\) thuộc đường thẳng \(\Delta \).
Hơn nữa, thay tọa độ điểm \(B\) và \(M\) vào phương trình mặt phẳng \(\left( P \right)\) ta được
\(\left\{ \begin{array}{l}2 + 2 + 8 - 3 > 0\\1 + 6 + 8 - 3 > 0\end{array} \right.\)
Suy ra hai điểm \(B\) và \(M\) nằm cùng phía đối với mặt phẳng \(\left( P \right)\).
\(\overrightarrow {BM} = \left( { - 1; - 2;0} \right)\), \(\overrightarrow {BM} \) ngược hướng với \(\overrightarrow a \).
Vậy mũi tên không xuyên qua quả táo.
c) Xét hệ phương trình
\(\left\{ \begin{array}{l}x - 2y + 2{\rm{z}} - 3 = 0\\x = 2 + 2t\\y = - 1 + 4t\\z = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {2 + 2t} \right) - 2\left( { - 1 + 4t} \right) + 2.4 - 3 = 0\\x = 2 + 2t\\y = - 1 + 4t\\z = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \frac{3}{2}\\x = 5\\y = 5\\z = 4\end{array} \right.\)
Giao điểm của đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\) là điểm \(C\left( {5;5;4} \right)\).
Vậy mũi tên cắm vào bức tường tại điểm \(C\left( {5;5;4} \right)\).
d) Góc giữa mũi tên và mặt đất bằng góc giữa đường thẳng \(\Delta \) và \(\left( Q \right)\).
\(\sin \left( {\Delta ,\left( Q \right)} \right) = \frac{4}{{\sqrt {{2^2} + {4^2}} .\sqrt {{1^2} + {1^2}} }} = \frac{2}{{\sqrt {10} }}\).
\({\rm{cos}}\left( {\Delta ,\left( Q \right)} \right) = \frac{{\sqrt 6 }}{{\sqrt {10} }}\)
Chiều dài bóng của mũi tên \(l = \frac{{\sqrt {39} }}{{10}}.\frac{{\sqrt 6 }}{{\sqrt {10} }} = \frac{{3\sqrt {65} }}{{50}}\).
Lời giải
Thể tích của bể nước là \(V = 4.3.2\sqrt 3 = 24\sqrt 3 \).
Vì thể tích nước bằng \(1/2\) thể tích thể nên độ cao của mặt nước so với mặt phẳng đáy là \(z = \sqrt 3 \)
Khi nghiêng bể quanh trục \(Oy\) một góc \(\alpha \). Mặt nước chứa cạnh \(A'D'\)và thể tích nước bằng \(\frac{1}{2}\) thể tích hình hộp chữa nhật nên mặt nước là mặt phẳng đối xứng qua tâm của hình hộp chữ nhật. Vì vậy mặt phẳng phải đi qua cạnh \(BC\).
Góc nghiêng tạo bởi mặt phẳng đáy với mặt phẳng \(\left( {O\,xy} \right)\) bằng góc tạo bởi mặt phẳng \(\left( {MNEF} \right)\) và mặt phẳng đáy và bằng góc \(\left( {ADD'A'} \right)\) và mặt phẳng \(\left( {zoy} \right)\).
Xét tam giác \(A'AB\) ta có: \(\sin \alpha = \sqrt {\frac{3}{7}} \); \(cos\alpha = \sqrt {\frac{4}{7}} \).

Điểm \(M\) nằm trên \(A\,A'\) nhưng vì mặt nước chạm \(A'\) nên \(M\) trùng \(A' = \left( {0;\,0;\,2\sqrt 3 } \right)\).
Ta có: \(\left\{ \begin{array}{l}{x_{A'}} = A\,A'.\sin \alpha = \frac{{2\sqrt 3 .\sqrt 3 }}{{\sqrt 7 }} = \frac{6}{{\sqrt 7 }}\\{y_{A'}} = 0\\{z_{A'}} = A\,A'.\cos \alpha = \frac{{2\sqrt 3 .\sqrt 4 }}{7} = \frac{{4\sqrt 3 }}{{\sqrt 7 }}\end{array} \right.\)
\(\left\{ \begin{array}{l}{x_C} = {x_B} = 4.\cos \alpha = \frac{8}{{\sqrt 7 }}\\{y_C} = 3\\{z_C} = {z_B} = 4.\sin \alpha = \frac{{4\sqrt 3 }}{{\sqrt 7 }}\end{array} \right.\)
Vì điểm \(I\) mới sau khi nghiêng vẫn thuộc \(ME\) và \(\frac{{MI}}{{ME}} = \frac{{A'I}}{{A'C}} = \frac{2}{5} \Leftrightarrow \overrightarrow {2IC} + 3\overrightarrow {IA'} = 0\)
\( \Leftrightarrow \left\{ \begin{array}{l}2\left( {\frac{8}{{\sqrt 7 }} - {x_o}} \right) + 3\left( {\frac{6}{{\sqrt 7 }} - {x_o}} \right) = 0\\2\left( {3 - {y_o}} \right) + 3\left( { - {y_o}} \right) = 0\\2\left( {\frac{{4\sqrt 3 }}{{\sqrt 7 }} - {z_o}} \right) + 3\left( {\frac{{4\sqrt 3 }}{{\sqrt 7 }} - {z_o}} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_o} = \frac{{34}}{{5\sqrt 7 }}\\{y_o} = \frac{6}{5}\\{z_o} = \frac{{4\sqrt 3 }}{{\sqrt 7 }}\end{array} \right.\)
Vậy \(\frac{{{x_o}}}{{\sqrt 7 }} + 5{y_o} + \frac{{5{z_o}}}{{\sqrt {21} }} = \frac{{34}}{{5.7}} + 5.\frac{6}{5} + \frac{5}{{\sqrt {21} }}.\frac{{4\sqrt 3 }}{{\sqrt 7 }} = \frac{{344}}{{35}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) [NB] Thầy quản nhiệm muốn chia lớp ra thành 4 tổ, mỗi tổ có 10 bạn thì có \(C_{40}^{10}.C_{30}^{10}.C_{20}^{10}\) cách.
b) [TH] Xác suất để thầy quản nhiệm chia lớp ra thành 4 tổ, mỗi tổ có 10 bạn sao cho số lượng nam và nữ của mỗi tổ bằng nhau là \(0,03\). (Làm tròn đến hàng phần trăm)
c) [TH] Thầy quản nhiệm có thể chia lớp ra thành 4 tổ, mỗi tổ có 10 bạn sao cho số lượng các bạn nữ của các tổ lập thành một cấp số cộng và số lượng các bạn nam của mỗi tổ cũng vậy.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



![Mái nhà tranh của ông F được đặt vào trong hệ trục tọa độ \[Oxyz\] với đơn vị là mét với mặt phẳng \[(R):z + 1 = 0\] là mặt đất (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid13-1767803090.png)