Câu hỏi:

08/01/2026 41 Lưu

Được biết có 5% đàn ông bị mù màu và 0,25% phụ nữ bị mù màu (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics - Understanding why and how, Springer, 2005). Giả sử số đàn ông bằng số phụ nữ. Chọn một người bị mù màu một cách ngẫu nhiên. Hỏi xác suất để người đó là đàn ông là bao nhiêu (nhập đáp án vào ô trống, làm tròn kết quả đến hàng phần chục nghìn)?

Đáp án  _______

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1. 0,9524

Xét hai biến cố:

     A: “Người được chọn là đàn ông”;                    B: “Người được chọn bị mù màu”.

Theo bài ra ta có: \({\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}} \right) = 0,05;\,\,{\rm{P}}\left( {{\rm{B}}\mid \bar A} \right) = 0,0025\).

Vì số đàn ông bằng số phụ nữ nên ta có \({\rm{P}}\left( {\rm{A}} \right) = 0,5\)\[{\rm{P}}\left( {\bar A} \right) = 1 - 0,5 = 0,5\].

Áp dụng công thức Bayes, ta có xác suất để một người mù màu được chọn là đàn ông là:

\({\rm{P}}\left( {{\rm{A}}\mid {\rm{B}}} \right) = \frac{{P\left( A \right) \cdot P\left( {B\mid A} \right)}}{{P\left( A \right) \cdot P\left( {B\mid A} \right) + P\left( {\bar A} \right) \cdot P\left( {B\mid \bar A} \right)}} = \frac{{0,5 \cdot 0,05}}{{0,5 \cdot 0,05 + 0,5 \cdot 0,0025}} \approx 0,9524\).

Đáp án cần nhập là: \[0,9524\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tại \({t_0} = 70\) ta có: \(T\left( {70} \right) = 300\).

\(\mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ - }} \left( {20 + 4t} \right) = 300\); \(\mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ + }} \left( {a - 2t} \right) = a - 140\).

Hàm số liên tục trên tập xác định khi: \(\mathop {\lim }\limits_{t \to {{70}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{70}^ + }} T\left( t \right) = T\left( {70} \right)\)

\( \Leftrightarrow a - 140 = 300\)\( \Leftrightarrow a = 440\). Vậy giá trị của \(a = 440^\circ {\rm{C}}\). Chọn A.

Câu 2

A. \(\frac{{2750\pi }}{3}\) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).   
B. \(\frac{{2500\pi }}{3}\) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).      
C. \(\frac{{2050\pi }}{3}\)\(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).            
D. \(\frac{{2250\pi }}{3}\) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Lời giải

Chọn hệ trục tọa độ như hình vẽ bên.

Ta gọi thể tích của chiếc mũ là \(V\).

Thể tích của khối trụ có bán kính đáy bằng \(OA = 10\)cm và đường cao \(OO' = 5\)cm là \({V_1}\).

Thể tích của vật thể tròn xoay khi quay hình phẳng giới hạn bởi đường cong \(AB\) và hai trục tọa độ quanh trục \(Oy\) \({V_2}\). Khi đó, ta có \(V = {V_1} + {V_2}\).

Ta có \({V_1} = 5 \cdot {10^2}\pi = 500\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Do parabol có đỉnh \(A\) nên nó có phương trình dạng \(\left( P \right):y = a{\left( {x - 10} \right)^2}\). Vì \(\left( P \right)\) qua điểm \(B\left( {0;20} \right)\) nên \(a = \frac{1}{5}\). Do đó, \(\left( P \right):y = \frac{1}{5}{\left( {x - 10} \right)^2}\). Từ đó suy ra \(x = 10 - \sqrt {5y} \) (do \(x < 10\)).

Suy ra \({V_2} = \pi \int\limits_0^{20} {{{\left( {10 - \sqrt {5y} } \right)}^2}{\rm{dy}}} = \pi \left( {3000 - \frac{{8000}}{3}} \right) = \frac{{1000}}{3}\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Do đó \(V = {V_1} + {V_2} = \frac{{1000}}{3}\pi + 500\pi = \frac{{2500}}{3}\pi \) \(\left( {{\rm{c}}{{\rm{m}}^3}} \right)\). Chọn B.

Chuẩn bị cho đêm hội diễn văn nghệ chào đón năm mới, bạn Minh Hiền đã làm một chiếc mũ “cách điệu” cho ông già Noel (ảnh 2)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP