Câu hỏi:

11/01/2026 19 Lưu

Cho hình vẽ. Biết \(\widehat B = 65^\circ ,\)\(\widehat {ACB} = 50^\circ \), hai tia \(Cx\)\(CB\) đối nhau, tia \(Cy\) là tia phân giác của \(\widehat {ACx}\).

Cho hình vẽ. Biết  góc B - 65 độ , góc ACB = 50 độ , hai tia Cx  và CB  đối nhau (ảnh 1)

Hỏi số đo \(\widehat {ACy}\) bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

65

Vì hai tia \(Cx\)\(CB\) đối nhau nên \(\widehat {xCB}\) là góc bẹt.

Ta có \(\widehat {ACB}\)\(\widehat {ACx}\) là hai góc kề bù nên \(\widehat {ACB} + \widehat {ACx} = 180^\circ \) hay \(50^\circ + \widehat {ACx} = 180^\circ \)

Suy ra \(\widehat {ACx} = 180^\circ - 50^\circ = 130^\circ \).

Lại có tia \(Cy\) là tia phân giác của \(\widehat {ACx}\) nên \(\widehat {ACy} = \widehat {yCx} = \widehat {\frac{{ACx}}{2}} = 65^\circ \).

Vậy \(\widehat {ACy} = 65^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nhận thấy \(\widehat {cAa} = \widehat {ABb} = 90^\circ \) (giả thiết).

Mà hai góc ở vị trí đồng vị nên \(a\parallel b\).

\(a\parallel b\) nên \(\widehat {ADC} = \widehat {DCb} = 60^\circ \) (so le trong).

Lại có, \(\widehat {DCb}\)\(\widehat {DCB}\) là hai góc kề bù nên \(\widehat {DCb} + \widehat {DCB} = 180^\circ \) hay \(60^\circ + \widehat {DCB} = 180^\circ \).

Do đó, \(\widehat {DCB} = 180^\circ - 60^\circ = 120^\circ \) hay \(x = 120^\circ \).

Câu 2

a) \(\widehat {xAB},\widehat {BAC}\) là hai góc kề bù.

Đúng
Sai

b) \(\widehat {BAy} = 110^\circ \).

Đúng
Sai

c) \(\widehat {yAC} = 60^\circ \).

Đúng
Sai
d) Đường thẳng \(xy\) song song với đường thẳng \(BC\).
Đúng
Sai

Lời giải

a) Sai.

Nhận thấy \(\widehat {xAB}\)\(\widehat {CAB}\) chỉ là hai góc kề nhau do \(\widehat {xAB} + \widehat {CAB} \ne 180^\circ \). Do đó, ý a) sai.

b) Đúng.

Vì tia \(AC\) là tia phân giác của \(\widehat {yAB}\) nên ta có \(\widehat {yAB} = 2\widehat {BAC}\). Do đó, ý b) là đúng.

c) Sai.

\(\widehat {xAB}\)\(\widehat {yAB}\) là hai góc kề là hai góc kề bù nên ta có \(\widehat {xAB} + \widehat {yAB} = 180^\circ \).

Do đó, \(\widehat {yAB} = 180^\circ - \widehat {xAB} = 180^\circ - 70^\circ = 110^\circ \).

Mà tia \(AC\) là tia phân giác của \(\widehat {yAB}\) nên \(\widehat {yAC} = \widehat {CAB} = \frac{{\widehat {yAB}}}{2} = \frac{{110^\circ }}{2} = 55^\circ \).

Vậy ý c) sai.

d) Đúng.

Ta có: \(\widehat {yAC} = 55^\circ \); \(\widehat {ACB} = 55^\circ \) nên \(\widehat {ACB} = \widehat {yAC}\).

Mà hai góc ở vị trí so le trong nên \(xy\parallel BC\).

Do đó, ý d) đúng.

Câu 3

a)\(\widehat {ABD}\)\(\widehat {DBx'}\) là hai góc kề bù.

Đúng
Sai

b) \(\widehat {ABD} = 115^\circ .\)

Đúng
Sai

c) \(xx'\) song song với \(yy'\).

Đúng
Sai
d) \(\widehat {CDt} = 115^\circ \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(\widehat {xAm}\)\(\widehat {mAx'}\) là hai góc kề bù.

Đúng
Sai

b) \(\widehat {xAB} = \widehat {mAx'} = 120^\circ .\)

Đúng
Sai

c) \[xx'\parallel yy'.\]

Đúng
Sai
d) \[Bb\] là tia phân giác của \[\widehat {ABy'}.\]
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP