Câu hỏi:

11/01/2026 26 Lưu

Cho hình vẽ, biết \(\widehat {xAC} = 54^\circ ,\widehat {ABC} = 63^\circ \), tia \(AB\) là tia phân giác của \(\widehat {yAC}\).

Cho hình vẽ, biết góc xAC =54 độ, góc ABC =63 độ , tia  AB là tia phân giác của  .  (ảnh 1)

Xét tính đúng sai của các khẳng định sau:

a) \(\widehat {xAC}\)\(\widehat {BAC}\) là hai góc kề nhau.

Đúng
Sai

b) \(\widehat {CAy} = 126^\circ \).

Đúng
Sai

c) \(\widehat {yAB} = 72^\circ \).

Đúng
Sai
d) Đường thẳng \(xy\) song song với đường thẳng \(BC.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Nhận thấy \(\widehat {xAC}\)\(\widehat {BAC}\) là hai góc kề nhau và \(\widehat {xAC}\)\(\widehat {yAC}\) là hai góc kề bù.

Do đó, ý a) là đúng.

b) Đúng.

Ta có: \(\widehat {xAC} + \widehat {yAC} = 180^\circ \) nên \(\widehat {yAC} = 180^\circ - \widehat {xAC} = 180^\circ - 54^\circ = 126^\circ \).

Do đó, ý b) là đúng.

c) Sai.

\(AB\) là tia phân giác của \(\widehat {yAC}\) nên \(\widehat {yAB} = \widehat {CAB} = \frac{{\widehat {yAC}}}{2} = 63^\circ \).

Do đó, \(\widehat {yAB} = \widehat {ABC} = 63^\circ \).

Vậy ý c) là sai.

d) Đúng.

Mà hai góc ở vị trí so le trong nên đường thẳng \(xy\) song song với đường thẳng \(BC.\)

Do đó, ý d) là đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(Ax\parallel Cz\)\(Ax\parallel yy'\) nên \(yy'\parallel Cz\).

\(Ax\parallel yy'\) nên \(\widehat {BAx} = \widehat {ABy} = 30^\circ \)(so le trong)

\(yy'\parallel Cz\) nên \(\widehat {zCB} = \widehat {CBy'} = 120^\circ \) (so le trong)

Ta có: \(\widehat {CBy'}\)\(\widehat {CBy}\) là hai góc kề bù nên \(\widehat {CBy'} + \widehat {CBy} = 180^\circ \).

hay \(\widehat {CBy} = 180^\circ - \widehat {CBy'} = 180^\circ - 120^\circ = 60^\circ .\)

Lại có \(\widehat {CBy}\)\(\widehat {ABy}\) là hai góc kề nhau nên \(\widehat {CBy} + \widehat {ABy} = \widehat {ABC}\).

Do đó, \(\widehat {ABC} = 30^\circ + 60^\circ = 90^\circ \).

Lời giải

\(\widehat {xOM}\)\(\widehat {MON}\) là hai góc kề nhau nên ta có: \(\widehat {xOM} + \widehat {MON} = \widehat {xON}\)

\(\widehat {xON}\) \(\widehat {NOy}\)là hai góc kề bù nên ta có: \(\widehat {xON} + \widehat {NOy} = \widehat {xOy} = 180^\circ \)

Do đó \(\widehat {xOM} + \widehat {MON} + \widehat {NOy} = 180^\circ \)

Suy ra \(\widehat {MON} = 180^\circ - \widehat {xOM} - \widehat {NOy}\)

Nên \(\widehat {MON} = 180^\circ - 30^\circ - 30^\circ = 120^\circ \)

\(OI\) là tia phân giác của \(\widehat {MON}\) nên ta có: \(\widehat {MOI} = \widehat {ION} = \frac{1}{2}\widehat {MON} = \frac{1}{2} \cdot 120^\circ = 60^\circ \).

\(\widehat {xOM}\)\(\widehat {MOI}\) là hai góc kề nhau nên ta có: \(\widehat {xOM} + \widehat {MOI} = \widehat {xOI}\)

Suy ra \(\widehat {xOI} = 30^\circ + 60^\circ = 90^\circ \).

Câu 3

a) \(\widehat {ABC}\) và \(\widehat {CBz}\) là hai góc kề bù.

Đúng
Sai

b) \(\widehat {CBz} = 70^\circ \).

Đúng
Sai

c) \(Oy\) song song với \(Az\).

Đúng
Sai
d) \(\widehat {BCO} = 110^\circ \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\widehat {MAQ} = 150^\circ .\)              
B. \(\widehat {MAQ} = 30^\circ .\)      
C. \(\widehat {MAQ} = 180^\circ .\)               
D. \(\widehat {MAQ} = 130^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Qua một điểm ở ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó.

B. Qua một điểm ở ngoài một đường thẳng, có vô số đường thẳng song song với đường thẳng đó.

C. Qua một điểm ở ngoài một đường thẳng, không kẻ được đường thẳng song song với đường thẳng đó.

D. Qua một điểm ở ngoài một đường thẳng, kẻ được ít nhất một đường thẳng song song với đường thẳng đó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP