Cho hình vẽ với số đo các góc cho trước dưới đây.

Hỏi số đo của góc \({D_2}\) bằng bao nhiêu độ?
Quảng cáo
Trả lời:
Đáp án:
Nhận thấy \(\widehat {cAE}\) và \(\widehat {cAa}\) là hai góc kề bù nên ta có: \(\widehat {cAE} + \widehat {cAa} = 180^\circ \), suy ra \(\widehat {cAE} = 180^\circ - 123^\circ = 57^\circ .\)
Suy ra \(\widehat {cAE} = \widehat {{B_1}} = 57^\circ .\)
Mà hai góc ở vị trí đồng vị nên \(a\parallel b\).
Suy ra \(\widehat {{E_1}} = \widehat {{D_1}} = 85^\circ \) (so le trong)
Lại có \(\widehat {{D_1}}\) và \(\widehat {{D_2}}\) là hai góc kề bù, suy ra \(\widehat {{D_2}} = 180^\circ - \widehat {{D_1}} = 180^\circ - 85^\circ = 95^\circ \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(Ax\parallel Cz\) mà \(Ax\parallel yy'\) nên \(yy'\parallel Cz\).
Vì \(Ax\parallel yy'\) nên \(\widehat {BAx} = \widehat {ABy} = 30^\circ \)(so le trong)
Vì \(yy'\parallel Cz\) nên \(\widehat {zCB} = \widehat {CBy'} = 120^\circ \) (so le trong)
Ta có: \(\widehat {CBy'}\) và \(\widehat {CBy}\) là hai góc kề bù nên \(\widehat {CBy'} + \widehat {CBy} = 180^\circ \).
hay \(\widehat {CBy} = 180^\circ - \widehat {CBy'} = 180^\circ - 120^\circ = 60^\circ .\)
Lại có \(\widehat {CBy}\) và \(\widehat {ABy}\) là hai góc kề nhau nên \(\widehat {CBy} + \widehat {ABy} = \widehat {ABC}\).
Do đó, \(\widehat {ABC} = 30^\circ + 60^\circ = 90^\circ \).
Lời giải
Vì \(\widehat {xOM}\) và \(\widehat {MON}\) là hai góc kề nhau nên ta có: \(\widehat {xOM} + \widehat {MON} = \widehat {xON}\)
Vì \(\widehat {xON}\) và \(\widehat {NOy}\)là hai góc kề bù nên ta có: \(\widehat {xON} + \widehat {NOy} = \widehat {xOy} = 180^\circ \)
Do đó \(\widehat {xOM} + \widehat {MON} + \widehat {NOy} = 180^\circ \)
Suy ra \(\widehat {MON} = 180^\circ - \widehat {xOM} - \widehat {NOy}\)
Nên \(\widehat {MON} = 180^\circ - 30^\circ - 30^\circ = 120^\circ \)
Vì \(OI\) là tia phân giác của \(\widehat {MON}\) nên ta có: \(\widehat {MOI} = \widehat {ION} = \frac{1}{2}\widehat {MON} = \frac{1}{2} \cdot 120^\circ = 60^\circ \).
Vì \(\widehat {xOM}\) và \(\widehat {MOI}\) là hai góc kề nhau nên ta có: \(\widehat {xOM} + \widehat {MOI} = \widehat {xOI}\)
Suy ra \(\widehat {xOI} = 30^\circ + 60^\circ = 90^\circ \).
Câu 3
a) \(\widehat {ABC}\) và \(\widehat {CBz}\) là hai góc kề bù.
b) \(\widehat {CBz} = 70^\circ \).
c) \(Oy\) song song với \(Az\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Qua một điểm ở ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó.
B. Qua một điểm ở ngoài một đường thẳng, có vô số đường thẳng song song với đường thẳng đó.
C. Qua một điểm ở ngoài một đường thẳng, không kẻ được đường thẳng song song với đường thẳng đó.
D. Qua một điểm ở ngoài một đường thẳng, kẻ được ít nhất một đường thẳng song song với đường thẳng đó.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) \(\widehat {xAC}\) và \(\widehat {BAC}\) là hai góc kề nhau.
b) \(\widehat {CAy} = 126^\circ \).
c) \(\widehat {yAB} = 72^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


